40
EVALUACIÓN TEÓRICA DE LA DISPERSIÓN INELÁSTICA
DE LEPTONES DE EFECTOS NUCLEARES
Wana, Ngadda, Yakubu.
ISSN 2477-9105
Número 29 Vol.1 (2023)
DOI: https://doi.org/10.47187/perf.v1i29.203
University of Maiduguri, Department of Physics, P.M.B 1069, Maiduguri, Borno State. Nigeria. West Africa.
* emmalikta2014@gmail.com
La dispersión inelásca es un proceso en el que no se conserva la energía cinéca de una parcula
incidente debido a la interacción entre un electrón y un fotón provocando un estado nuclear inestable.
En una interacción del fotón incidente con la materia se produce dispersión Raman donde la frecuencia
del fotón se desplaza hacia al rojo o el azul. La dispersión de electrones de naturaleza profundamente
inelásca que emana de los protones proporciona la evidencia primordial de la presencia de quarks, los
neutrones sufren dispersión inelásca que excita al núcleo y hace que emita parculas corpusculares
y electromagnécas. El objevo de este trabajo fue obtener teóricamente el efecto nuclear sobre la
dispersión de leptones ineláscos y observar la dependencia nuclear. Se ulizaron los métodos, función
de transferencia del momento al cuadrado y el producto escalar de Lorentz. Se obtuvo la correlación
entre los parámetros de baja energía y la valencia de quarks, el valor indicavo en cromodinámica
cuánca es el 5% y el material nuclear innito no conduce a ningún informe de tamaño nito. El origen
de los efectos nucleares aún no se evidencia; sin embargo, las funciones estructurales y los efectos de
tamaño nito fueron probados teóricamente.
Palabras Clave: 

Inelasc scaering is a process in which the kinec energy of an incident parcle is not conserved
due to the interacon between an electron and a photon causing an unstable nuclear state. Upon
the interacon of the incident photon with maer, Raman scaering occurs where the frequency of
the photon shis towards red or blue. Electron scaering of a profoundly inelasc nature emanang
from protons provides the primary evidence for the presence of quarks, neutrons undergo inelasc
scaering that excites the nucleus and causes it to emit corpuscular and electromagnec parcles. The
aim of this work was to theorecally obtain the nuclear eect on the scaering of inelasc leptons and
to observe the nuclear dependence. The methods, cross-secon four-momentum transfer squared
funcon and the Lorentz scalar product, were used. The correlaon between low energy parameters
and quark valence was obtained, the indicave value in quantum chromodynamics is 5% and innite
nuclear material does not lead to any nite size report. The origin of the nuclear eects is not yet
evident; however, the structural funcons and the eects of nite size were theorecally tested.
Keyword: .
EVALUACIÓN TEÓRICA DE LA DISPERSIÓN INELÁSTICA DE
LEPTONES DE EFECTOS NUCLEARES
RESUMEN
ABSTRACT
Theorecal Evaluaon on Inelasc Lepton Scaering
of Nuclear Eects
Fecha de recepción: 10-04-2022 Fecha de aceptación: 18-04-2022 Fecha de publicación: 31-03-2023
Emmanuel Wana Likta *
Y. H. Ngadda
Nura Yakubu
iD
iD
iD
http://ceaa.espoch.edu.ec:8080/revista.perfiles/
ISSN 2477-9105
Número 29 Vol.1 (2023)
DOI: https://doi.org/10.47187/perf.v1i29.203
41
EVALUACIÓN TEÓRICA DE LA DISPERSIÓN INELÁSTICA
DE LEPTONES DE EFECTOS NUCLEARES
Wana, Ngadda, Yakubu.
ISSN 2477-9105
Número 29 Vol.1 (2023)
DOI: https://doi.org/10.47187/perf.v1i29.203
I. INTRODUCCIÓN
Inelasc scaering is a fundamental scaering
process in which the kinec energy of an incident
parcle is not conserved. In contrast to elasc
scaering some of the incident parcle energy
is lost or increased (1). The principle of inelasc
collision in dynamics is quite disnct; inelasc
collision in dynamics refers to processes in
which the total macroscopic kinec energy is
not conserved (2). Scaering due to inelasc
collisions will be inelasc but elasc collisions
oen transfer kinec energy between parcles.
As in Compton, scaering due to elasc collisions
can also be inelasc (3).
The inelasc scaering probability that depends
on the incident electron energy is usually smaller
than the elasc scaering one (4). In regard to gas
electron diracon (GED), reecon high-energy
electron diracon (RHEED), and transmission
electron diracon (5). The incident electron
energy is high, and the contribuon of inelasc
electron scaering can be ignored (6). Deep
inelasc scaering of electrons from protons
provided the rst direct evidence of quark
existence (7).
Raman scaering, also known as inelasc
scaering due to a photon being the incident
parcle (8). The incident photon interacts with
maer and the photon frequency is shied
toward red or blue (9). A red shi can be observed
when part of the photon energy is transferred
to the interacng maer, where it adds to its
internal energy through a process (10). The blue
shi can be observed when the internal energy of
the maer is transferred to the photon. The red
and blue shi processes are known as Stokes and
an-stokes Raman Scaering respecvely (11).
Inelasc scaering is the interacon between
an electron and a photon. A high-energy photon
collides with a free electron and transfers energy
(12). An electron with relavisc energy collides
with an infrared or visible photon, the electron
gives energy to the photon (13).
It is known that neutrons undergo many types
of scaering, including both elasc and inelasc
scaering. Whether elasc or inelasc scaer
occurs depends on the neutron speed; fast,
thermal, or somewhere in between (14). It also
depends on the nucleus it strikes and its neutron
cross-secon (15). The neutron interacts with the
nucleus and the system's kinec energy changes
II. MATERIALS AND METHOD
The cross-secon has a four-momentum transfer
squared funcon carried by the virtual photon
and the Lorentz scalar product (19). For a quark
to carry a fracon x of the nucleon momentum
with when probed with resoluon 1
QƐ
This can be jused in quantum chromodynamics
since anything can be jused in a theory that has
not been solved (20). The successful predicon
that the same quark distribuons are given
simply by the square averages of relevant quark
changes (21).
An integral which measures the excess of
fermions over anfermions in the nucleon should
be equal to three (22). Finally, the black box
²)) is the Fourier transform of the light cone
correlaon funcon²)) renormalized at ²
that is calculated in terms of α (²).
Explicitly,
Where
Is dened for a nucleon at rest, with
q(x,Q²)
X = (2)
(1)
in rest frame = 0

Mn
X = =(3)
 5
 18


in the inelasc scaering (16). It oen acvates
the nucleus pung it into an excited unstable
short-lived energy state which causes it to quickly
emit some kind of radiaon to bring it back down
to a stable or ground state. Alpha, beta, gamma,
and protons may be emied (17). It is known in
Nuclear Physics that scaered Parcles are a type
of nuclear reacon that can cause the nucleus to
recoil in other direcons (18).
(4)
(5)
(6)
(7)
42
EVALUACIÓN TEÓRICA DE LA DISPERSIÓN INELÁSTICA
DE LEPTONES DE EFECTOS NUCLEARES
Wana, Ngadda, Yakubu.
ISSN 2477-9105
Número 29 Vol.1 (2023)
DOI: https://doi.org/10.47187/perf.v1i29.203
Where  and are quark eld operaons.
The quark contribuon reduces the equal-me
correlaon funcon of non-relavisc quantum
mechanics (23). A familiar funcon is:
Where │A represents a nucleus at rest and Ψ is
the nucleon eld operator (24).The alternave
representaon as a displaced overlap funcon
Where Ψ is the one nucleon wave funcon,
understanding that the correlaon fracon
measures the system size (25).
(8)
(9)
(11)
(12)
(13)
(14)
(10)
Considering the Rayleigh-Schrödinger
perturbaon theory, the energy dierence is:
Tends to zero as v with and Q xed. The
only change in the formalism is that with nuclear
target x is usually replaced by
Which can, in principle range from 0 to A. It is
known that for x 0.3 there are no sea quarks
and therefore:
Thus  )must have the form since the quark
per nucleon is xed:
So  ) must be posive in some, if not all the
regions x <0.3.
III. RESULTS AND DISCUSSION
Table 1:
Table 2:
Table 3:
ZQuark Valence
X Y
045
1 2.9 3.9
2 0.4 2.1
3 0.1 2
4-1.9
5 - 1.8
6- 1.7
7 - 1.6
8- 1.5
9-1.4
w Innite Nuclear
g H I J
31 2 1.7 1.3 1.2
40 1.8 1.55 1.35 1.3
50 1.6 1.5 1.36 1.32
60 1.5 1.45 1.37 1.35
70 1.4 1.38 1.38 1.36
80 1.37 1.37 1.37 1.37
90 1.36 1.36 1.39 1.38
100 1.35 1.35 1.4 1.39
Quantum Chromodynamic
A B
58-
6 8 -
711 12.5
8 11 12
11 9 10
13 10 9
14 9.5 8.5
15 9 8
16 5 7.5
20 7 6.5
22 6 6
24 5.7 5.7
26 5 5.7
28 4.95 4.95
29 4.7 4.7
32 3 4.5
34 4.5 4
36 2.5 2.8
38 3 2.5
39 4 2
42 8 -
44 12.5 -
43
EVALUACIÓN TEÓRICA DE LA DISPERSIÓN INELÁSTICA
DE LEPTONES DE EFECTOS NUCLEARES
Wana, Ngadda, Yakubu.
ISSN 2477-9105
Número 29 Vol.1 (2023)
DOI: https://doi.org/10.47187/perf.v1i29.203
Table 4:
Fig. 1:         

Fig. 4:         

Fig. 2:

Fig. 3:

QStructure function
F D
0.5 20 -
0.6 19.9 20
0.75 10 11
158
1.5 37.5
2 3 7.5
2.5 37.5
3 3 7.5
Fig 1 shows that X and Y are parallel lines that
move in opposite lines. Where x represents x >
0.1 and Y represents x 0. Also, gure 4 indicates
a valence correlaon achieved for low energy
parameters for the quark valence correlaon.
Proving that the long-range tail was assumed to
acquit as  that is returned by if this lace is cut
by a quiet calculaon to the rootage which cutsx
 . The    quark valence distribuon
is checked by distances < , the correlaon
funcon spilling for   and necessary
unaltered deportment which obtains the lower
curve. The gure is the product of table 1.
Fig 2 shows that g, H, I and J have a meeng
point which is at 80 on the w axis. It started at
a parallel point that meets the point. Also, the
gure indicates innite nuclear maer so again
it is enrely unreliable for  40. It leads to no
report of nite size eects and an eort was
made to prove the fact that response takes place
theorecally. The gure is ploed from the results
obtained in table 2.
Fig 3 shows that line A forms a zigzag line which
makes it like the leers m and w. While line B
indicates a slight slope also similar to the leer m.
A represents the equaon and B represents
the equaon . This also indicates that there
are errors that quantavely work within. If ² is
chosen to be lile, then that is needed also
becomes lile. The lile value stated in Quantum
Chromodynamics signies that / is nearly
5%. The gure is the product of table 3.
Fig 4 shows F and D lines starng at a point where
a slope from 13 points on the structure-funcon
that are separated from each other. Point 13
44
EVALUACIÓN TEÓRICA DE LA DISPERSIÓN INELÁSTICA
DE LEPTONES DE EFECTOS NUCLEARES
Wana, Ngadda, Yakubu.
ISSN 2477-9105
Número 29 Vol.1 (2023)
DOI: https://doi.org/10.47187/perf.v1i29.203
indicates that D has a higher structure funcon
than F. D represents Deuterium on the structure
funcon and F represents Fe. Also, the gure
indicates the success of the scaling law that is
in relaon to the deuterium structure-funcon
The heavier can be understood in terms of
qualifying the properes of individual nucleons.
It is coherent to write the X>0.3 region in terms of
individual nucleon donaon since it is restrained
by lesser distances. The gure is ploed from the
results obtained in table 4.
In nuclei, the quarks correlaon funcons have a
large range. Regarding the origin of the nuclear
1. Borgschulte A, Jain A, Ramirez-Cuesta AJ, Martelli P, Remhof A, Friedrichs O, et al. Mobility and
dynamics in the complex hydrides LiAlH4 and LiBH4. Faraday Discuss [Internet]. 2011 [citado el
1 de marzo de 2023];151:213–30; discussion 285-95. Disponible en: hps://pubmed.ncbi.nlm.
nih.gov/22455070/.
2. Walker J, Resnick R. Halliday and Resnick fundamentals of physics. 2018.
3. Crandall R, Whitnell R, Beega R. Exactly soluble two-electron atomic model. Am J Phys
[Internet]. 1984;52(5):438–42. Disponible en: hp://dx.doi.org/10.1119/1.13650.
4. Rankin DWH, Mitzel N, Morrison C. Structural methods in molecular inorganic chemistry.
Hoboken, NJ: Wiley-Blackwell; 2013.
5. Ichimiya A, Cohen PI. Reecon high-energy electron diracon. Cambridge, England: Cambridge
University Press; 2011.
6. Yates JT Jr. Surface Science: An Introducon Surface Science: An Introducon , K. Oura , V. G.
Lifshits , A. A. Saranin , A. V. Zotov , and M. Katayama Springer-Verlag, New York, 2003. $89.95
(440 pp.). ISBN 3-540-00545-5. Phys Today [Internet]. 2004;57(10):79–80. Disponible en: hp://
dx.doi.org/10.1063/1.1825276.
7. Chenciner A, Montgomery R. A remarkable periodic soluon of the three-body problem in the
case of equal masses. Ann Math [Internet]. 2000 [citado el 1 de marzo de 2023];152(3):881.
Disponible en: hps://www.emis.de/journals/Annals/152_3/chencine.pdf.
8. Krishnakumar V, Keresztury G, Sundius T, Ramasamy R. Simulaon of IR and Raman spectra
based on scaled DFT force elds: a case study of 2-(methylthio)benzonitrile, with emphasis on
band assignment. J Mol Struct [Internet]. 2004;702(1–3):9–21. Disponible en: hps://www.
sciencedirect.com/science/arcle/pii/S0022286004004272.
9. Kuhn KF, Koupelis T. In quest of the universe. 4a ed. Sudbury, MA: Jones and Bartle; 2004
10. Maulik D, editor. Doppler ultrasound in obstetrics and gynecology. Berlin/Heidelberg: Springer-
Verlag; 2005.
11. Moore C. Braids in classical dynamics. Phys Rev Le [Internet]. 1993;70(24):3675–9. Disponible
en: hp://dx.doi.org/10.1103/PhysRevLe.70.3675.
12. Terreni J, Sambalova O, Borgschulte A, Rudić S, Parker SF, Ramirez-Cuesta AJ. Volale hydrogen
intermediates of CO2 methanaon by inelasc neutron scaering. Catalysts [Internet]. 2020
[citado el 1 de marzo de 2023];10(4):433. Disponible en: hps://www.mdpi.com/2073-
4344/10/4/433.
IV. CONCLUSIONS
V. REFERENCE
eect, there is no consensus. When the dust
seles, there will be an enhancement at low x,
although it may be closer to the boom than the
top. Pion indicates a natural qualitave view of
this enhancement. Based on pre-exisng nuclear
theory without any addional ingredients.
However, pions are only eecve degrees of
freedom, and an inelasc model will not work
with a high degree of accuracy. This eect is due
to the properes modicaon of nucleons that
are stretched in the nucleus. Structure funcons
have been understood for individual nucleons.
Finite size eects were theorecally proven.
45
EVALUACIÓN TEÓRICA DE LA DISPERSIÓN INELÁSTICA
DE LEPTONES DE EFECTOS NUCLEARES
Wana, Ngadda, Yakubu.
ISSN 2477-9105
Número 29 Vol.1 (2023)
DOI: https://doi.org/10.47187/perf.v1i29.203
13. Bagla JS. Cosmological N-Body simulaon: Techniques, Scope and Status. arXiv [astro-ph]
[Internet]. 2004 [citado el 1 de marzo de 2023]; Disponible en: hp://arxiv.org/abs/astro-
ph/0411043.
14. Thomas AW, Weise W. The structure of the nucleon. Weinheim, Germany: Wiley-VCH Verlag;
2001.
15. Zyla, P.a., et al. (Parcle Data Group) (2020) Review of Parcle Physics. Progress of
Theorecal and Experimental Physics, 2020, 083C01. - references - scienc research
publishing [Internet]. Scirp.org. [citado el 1 de marzo de 2023]. Disponible en: hps://
www.scirp.org/%28S%28vtj3fa45qm1ean45vvffcz55%29%29/reference/referencespapers.
aspx?referenceid=2832331.
16. Fellhauer M, Lin DNC, Bolte M, Aarseth SJ, Williams KA. The white dwarf decit in open clusters:
Dynamical processes. Astrophys J [Internet]. 2003;595(1):L53–6. Disponible en: hp://dx.doi.
org/10.1086/379005.
17. Burns PA. The measurement of alpha, beta and gamma radiaons. 1982.
18. Nachtmann O. Elementary parcle physics: Concepts and phenomena [Internet]. 1990a ed.
Berlin, Germany: Springer; 1989. Disponible en: hps://books.google.at/books?id=Co3_
CAAAQBAJ.
19. Amaudruz P. A re-evaluaon of the nuclear structure funcon raos for D, He, Li, C and Ca. arXiv
[hep-ph] [Internet]. 1995 [citado el 1 de marzo de 2023]; Disponible en: hp://arxiv.org/abs/
hep-ph/9503291.
20. Edelmann J, Piller G, Weise W. Polarized deuteron structure funcons at small x. arXiv [nucl-
th] [Internet]. 1997 [citado el 1 de marzo de 2023]; Disponible en: hp://arxiv.org/abs/nucl-
th/9701026.
21. Stanford AL, Tanner JM. Physics for students of science and engineering. 1a ed. San Diego, CA:
Academic Press; 2014.
22. Smirnov GI. On the universality of the x and A dependence of the EMC eect and its relaon to
parton distribuons in nuclei. arXiv [hep-ph] [Internet]. 1995 [citado el 1 de marzo de 2023];
Disponible en: hp://arxiv.org/abs/hep-ph/9512204.
23. Smirnov GI. Invesgaon of the A dependence in the deep inelasc scaering of leptons and its
implicaons for the interpretaon of the EMC eect. Phys At Nucl [Internet]. 1995 [citado el 1
de marzo de 2023];58(9):1613–8. Disponible en: hps://inis.iaea.org/search/search.aspx?orig_
q=RN:27038248.
24. Barret R.C. and D. f. jackson, “Nuclear Sizes and Structure, Oxford University Press, Oxford,
1977. - references - scienc research publishing [Internet]. Scirp.org. [citado el 1 de marzo
de 2023]. Disponible en: hps://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/
ReferencesPapers.aspx?ReferenceID=632486.
25. Goity Jae, Leutwyler H. On the mean free path of pions in hot maer. Phys Le B [Internet].
1989;228(4):517–22. Disponible en: hps://www.sciencedirect.com/science/arcle/
pii/0370269389909854