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Un problema común con los datos meteorológicos y climáticos es la pérdida de información debido 
a factores ambientales y técnicos. El objetivo de este estudio fue completar los datos observados 
de la estación meteorológica de Alao, perteneciente a la Escuela Superior Politécnica de Chimborazo 
(ESPOCH), durante el año 2021. Se utilizó el esquema de análisis de mapas objetivo interactivo de 
Barnes y el método de Cressman para estimar los datos faltantes en la serie temporal de la variable 
de temperatura, que funcionan según el peso con radios de influencia de 10, 30 y 60. Se obtuvo 
una precisión óptima del 99% en la segunda iteración del esquema de análisis de mapas objetivo 
interactivo de Barnes con el radio más pequeño.La precisión de los datos estimados por el análisis 
de mapas objetivo de Barnes depende del número de pasos hasta alcanzar valores más cercanos o 
iguales a los datos observados, mientras que con Cressman se obtuvo un 92%. Los resultados indican 
la dependencia del radio de influencia en el método de Cressman.

Palabras claves: Datos meteorológicos, Datos climáticos, Estimación de datos faltantes, Método de 
Cressman, Esquema de Análisis de Mapas Objetivo Interactivo de Barnes, Radio de influencia.

A common problem with weather and climate data is the loss of information due to environmental 
and technical factors. The objective of this study was to fill in the observed data from the Alaó 
meteorological station at the Escuela Superior Politécnica de Chimborazo (ESPOCH) in 2021. The 
Cressman and Interactive Barnes Objective Map Analysis Scheme was used to estimate missing data 
in the time series of the temperature variable, which works as a function of the weight with radii of 
influence of 10, 30, and 60. An optimum precision of 99% was obtained in the second pass of the 
interactive Barnes objective map-analysis scheme with the smallest radius. The accuracy of the data 
estimated by Barnes objective map-analysis depends on the number of pass up to the point of having 
the closest values   or being equal to the observed data, whereas with Cressman, 92% was obtained. 
The results indicate the dependence of the radius of influence on the Cressman method.

Keywords: Weather data, Climate data, Missing data estimation, Cressman method, Interactive Barnes 
Objective Map Analysis Scheme, Radius of influence.
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Temperature variable is considered a fundamental 
climatic element. It influences ecosystem function 
in terrestrial life (1–3). Missing information, data 
errors, and outliers are problems encountered 
in the analysis and prediction of climatological 
phenomena. The difficulties described below 
are based on environmental, technical, and 
operational factors that affect the instruments and 
sensors. Several studies have used mathematical 
and statistical methods to estimate a fit function 
to complete missing values based on information 
from the closest stations (4,5).

Objective analysis (OA) was used to determine the 
analytic function that represented the distribution 
of the data. By observing numerical data at 
irregularly spaced points, the spatial distribution 
structure can be reconstructed in two or three 
dimensions (5-7). This process has been applied 
for several purposes: including interpolation, 
data error correction, and smoothing. In most 
applications, it is incorporated to ensure internal 
consistency (6). It must be emphasized that this 
methodology has performed spatial and temporal 
interpolation on the continuous representation of 
data for weather forecasting, mapping, assimilation 
analysis, and visualization of climate variables (8,9) 

Cressman is considered an interpolation method 
used to estimate values in a given region; it is 
based on the contribution of the closest values to 
an unknown point, which means that estimated 
values have less influence from more distant points. 
This approach is known as the nearest neighbor 
method (6,10). On the other hand, Barnes is used 
to interpolate data in a scalar field; it is based on 
a mesh of cells and a weighting function used to 
weight the known data near the missing point, 
resulting in a smooth and accurate procedure that 
considers the spatial variation of the data (11,12).

Although these methods are used for spatial 
interpolation, minimal parameter restrictions 
are applied for temporal interpolation; because 
the atmospheric variable distribution can be 
represented by the sum of an infinite number of 
independent waves, which is; a Fourier integral 
representation. These findings support the 
relationship between the weight function and 
the definition of influenced radio using successive 
correction techniques. In this way, the estimation 
of missing data is performed using information 
from the same station and adjusting the model to 

I. INTRODUCTION the time series (13).

The purpose of this investigation was to obtain 
a smoothed function using the Cressman and 
Interactive Barnes Objective Map Analysis Scheme 
as a temporal behavior approximation for the 
temperature series. Missing data is essential for 
ensuring the integrity and reliability of the results.

Meteorological stations have reported climatic 
variables such as temperature (°C), humidity (%), 
solar radiation (watts/m2), atmospheric pressure 
(hPa), wind speed (m/s), and wind direction (°), since 
2013. This information was recorded in a database 
as part of the repository in ESPOCH (http://ceaa.
espoch.edu.ec:8080/redestaciones/). The Alao 
station is located at 773499E and 9793173N in 
Pungalá, Chimborazo Figure 1. Its altitude is 3064 m 
a.s.l. It has a territorial extension of approximately 
28.133,06 hectares. The hourly mean temperature 
data contained 8760 observations, corresponding 
to 2021. These methods were developed using 
the Jupiter interface in Python, which is an open-
source multi-paradigm programming language. 
The implementation code is available at: https://
github.com/geaaespoch/Cressman-and-Barnes-
method.

The weighted mean value was determined by 
estimating variables. As the sum of the weighted 
values depends on the distance from the model 
mesh node to the observation point, the closest 
values   have a greater influence (14).

II. MATERIALS AND METHODS

Figure. 1. Geographic Position of Alao Station
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Interactive Barnes Objective Map Analysis 
Scheme (IBOMAS)

The Barnes method (1964) assumes that the 
two-dimensional distribution of an atmospheric 
variable is represented by the superposition 
of harmonic waves, that is, a Fourier integral 
representation. A weight function is obtained 
using the separation of variables method for the 
wave equation. In this context, the probability 
distribution function of the data was represented 
by this function.

The Barnes Objective Map analysis has modified 
the initial Barnes scheme; it considers two weight 
functions as shown in equation (1)(14–16):

where rm is the distance between the grid point 
i and observations f(xi), and 0 < λ < 1 is the 
horizontal wave length. Furthermore, K and K0 
are the parameters of the response function that 
can be defined by the variance of the data. 

The current correction is expressed as the sum of 
the weighted averages of M observations:

where fi represents the observed data. In this 
case, Cressman's method was used, with one 
iteration defined by the radius of influence for 
the unsampled point and a weighting function 
that depends on its distance to the unsampled 
point and the radius of influence.

where di is the Euclidean distance between the 
sampled and unsampled points, and R is the 
radius of influence value.

Evaluation of the performance of the missing 
data estimation methods 

To validate these methods, calculating the error 
and precision metrics is essential to evaluate 
the performance and compare the models, thus 
selecting the best fit. Therefore, the mean square 
error (MSE), mean absolute error (MAE), mean 
square error (MSE), residual sum of squares (RSS), 
coefficient of determination (R²) and accuracy 
allowed to measure the differences between the 
observed and estimated values. It is an objective 

where the first addend is represented by the 
Barnes successive correction, and the difference 
between f(xm)-g0(xm) indicates the adjustment of 
the interpolation obtained with Barnes weighting 
to the observed data. In turn, g0(x), a weighted 
Gaussian function, acts as the initial approximation 
for performing Barnes interpolation (17, 18). 
Moreover, the function g0(xm) can be interpolate 
using different interpolation methods (19).

Unlike the Barnes method, IBOMAS controls 
the scale of the influence of the surrounding 
data by adjusting the wavelength, thus allowing 
the interpolation to be customized according to 
specific needs. Additionally, the convergence of 
the correction is achieved after at least two pass. 
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Cressman method

Cressman's method (1959) is used to estimate 
values at unsampled points within a region. This 
method is based on the idea that values near 
an unknown point have a greater influence on 
the estimated values than those further away. 
Cressman's method is similar to a nearest-
neighbor interpolation technique and is used 
in geophysical and environmental applications. 
(5,6,14)

In our case, it used the weighted average of the 
observed values to calculate the estimated value 
at an unknown location, where the weights were 
determined by the Euclidean distance.

Mathematically, it can be expressed as

= +(xi - xi-1) (yi - yi-1)di ,2 2
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The analysis of the Alaó Meteorological Station 
database reported 8760 observations in 2021, 
with 20% missing data. The Cressman and Barnes 
methods were used to fill in missing data for 
time temperature variable series reports. The 
Cressman method estimates the missing values 
of the study variable, with radii values of 10, 30, 
and 60, using the weighted mean function and 
Euclidean metric (Fig. 2).

Figure 2 illustrates the comparison between the 
original and estimated data using Cressman's 
method. The original data, represented by the 
solid blue line, are plotted against the estimated 
data, depicted by the dashed red line. The x-axis 
represents the time, ranging from 0 to 300, 
whereas the y-axis represents the measured 
values, ranging from 0 to 18. The estimated data 
closely followed the original data, indicating a 
high level of accuracy in interpolation. The overall 
pattern and peaks of the estimated data aligned 
well with those of the original data, although 
minor deviations were observed at certain 
points. Despite these small discrepancies, the 
general trends and fluctuations were accurately 

III. RESULTS

(7)

(8)

(9)

(10)

(11)

tool for measuring the performance of a model 
and improving its precision and accuracy (20).

where M represents the total amount of data, 
zi refers to the observed temperature in a 
specific element i,  represents the estimated 
temperature,  indicates the average of the 
estimated data, and  refers to the average data 
observed (20).

(Zi - Zi) ;
M

i=1
∑=MSE 1

n
2

(Zi - Zi) ;
M

i=1
∑=RSS

2

(Zi - Zi)
M

i=1
∑=MAE 1

n

(Zi - Zi)

(Zi - Zi)

M

M
i=1

i=1

∑

∑
=R2

2

2

,Number of correct predictions
Total number of predictions

accuracy =

captured. To quantify the accuracy, statistical 
metrics such as the Mean Absolute Error (MAE), 
Root Mean Squared Error (RMSE), and correlation 
coefficient were calculated between the original 
and estimated data. These observations suggest 
that Cressman's method effectively estimates 
missing or unsampled data points within a region 
while maintaining a high level of fidelity to the 
original dataset.

IBOMAS uses a Gaussian weighted function 
such that not all observations removed in the 
first pass, allowing estimates to be obtained 
at all points, as shown in Fig. 3. The estimated 
data presented variations and trends that were 
similar to those of the observed data. Similarly, 
IBOMAS in the second pass exhibited greater 
convergence between the data, as shown in 
Figs. 3-4.

The analysis presented in Figure 3 demonstrates 
the effectiveness of the IBOMAS in estimating the 
original dataset. The graph compares the original 
data (depicted by the solid blue lines) with the 
estimated data (depicted by the red dashed lines) 
across 300 data points. The y-axis values range 
from approximately 4 to 18, indicating variability 
in the dataset. The estimated data closely 
followed the trend of the original data, thereby 

Figure. 2. Cressman method.

Figure. 3. First pass - IBOMAS
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capturing periodic patterns with high accuracy. 
Although minor discrepancies were observed, 
particularly at the peaks and troughs, these 
deviations were minimal and did not significantly 
affect overall accuracy. The results confirm that 
the IBOMAS method provides a reliable and 
precise estimation of the original data, effectively 
capturing the underlying patterns and periodic 
behavior present in the dataset.

Figure 5 compares different estimation methods 
for temperature over a 24-hour period, 
highlighting the performance of Cressman's 
method, the first pass of the IBOMAS method, 
and the second pass of the IBOMAS method 
against the original data. Each method followed 
the general trend of the original data, which 
showed a temperature range (6 - 14°C). However, 
the IBOMAS method (both first and second 
passes) demonstrated a closer alignment with 
the original data points, indicating a higher 
accuracy compared to Cressman’s method. 
Notably, all methods capture a significant drop 
in temperature around the 10-hour mark and 
a sharp rise around 15-17 hours. The IBOMAS 
method, particularly the second pass, showed 
superior precision, making it more reliable than 
Cressman´s method for accurate temperature 
estimation.

Figure 6 illustrates the comparison of temperature 
estimation methods over a 24-hour period with 
a radius parameter R=30. This is in contrast with 
Cressman's method, the first pass of IBOMAS, 
and the second pass of IBOMAS using the original 
data. All the methods generally followed the 
trend of the original temperature data, which 
fluctuated between approximately 6°C and 14°C. 
However, the IBOMAS method, particularly the 
second pass, aligns more closely with the original 

The analysis depicted in Figure 4 highlights 
the performance of the IBOMAS in estimating 
the original dataset. The graph illustrates the 
original data (solid blue lines) compared with the 
estimated data (red dashed lines) over a span 
of 300 data points. The y-axis values, ranging 
from approximately fourth to eighteen, display 
the variability of the dataset. The estimated 
data successfully mirrored the trend of the 
original data and accurately captured periodic 
patterns. Although minor discrepancies were 
noticeable, particularly at the peaks and troughs, 
these deviations were minimal and did not 
significantly compromise overall accuracy. These 
results confirm that IBOMAS is highly effective 
in estimating the original data and accurately 
capturing the inherent patterns and periodic 
behaviors within the dataset.

In the context of the Cressman method, the 
choice of  influence radius was influenced by the 
temporal scale, with a delta t of 48 h. Hence, it 
is sensible to employ the influence radii of 10, 
30, and 60. The results indicate that an optimal 
fit was achieved with a radius of ten for both 
the Cressman and IBOMAS methods. However, 
with Cressman, discrepancies emerged with 
radii of 30 and 60, leading to underestimation 
and overestimation of the data, respectively, 
as shown in Figs. 6 and 7. Conversely, IBOMAS 
converges with the observed data across a range 
of influence radii, as illustrated in Fig. 5-7.

Figure. 4. Second pass - IBOMAS.

Figure. 5. Estimation Methods R=10

Figure. 6.  Estimation Methods R=30
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Figure. 7.   Estimation Methods R=60

Table  1. Error analyses

data points, demonstrating higher accuracy. The 
graph highlights the key points where all methods 
show a significant drop in temperature around the 
10-hour mark and a sharp rise between 15 and 17 
h. Despite the overall trend, Cressman’s method 
showed less precision than both the IBOMAS 
passes. This analysis indicates that, for more 
accurate temperature estimations, the second 
pass of IBOMAS is the most reliable, followed by 
the first pass, with Cressman's method having the 
least accuracy.

Figure 7 presents a comparison of the 
temperature estimation methods over a 24-hour 
period with a radius parameter R = 60. It evaluates 
the performance of Cressman's method, the first 
pass of IBOMAS, and the second pass of IBOMAS 
against the original temperature data. All 
methods tracked the trend of the original data, 
which ranged from approximately 6°C to 14°C. 
IBOMAS, particularly the second pass, exhibited 
a closer fit to the original data points, indicating 
superior accuracy. Key observations include a 
significant temperature drop around the 10-hour 
mark and a sharp increase between 15 and 17 h.

Although all methods capture these trends, 
Cressman's method shows less precision than 
both IBOMAS passes. This analysis suggests that, 
for a more accurate temperature estimation, 
the second pass of IBOMAS is the most reliable, 
followed by the first pass, with Cressman's 
method being the least precise.

Figure 5. It is visualized that the IBOMAS first 
and second pass model fit the observed data, 
while little divergence is observed in Cressman 
concerning radii 30 and 60. The ability of the 
models to fit the observed data supports their 
effectiveness in filling the missing values.

Error analyses 

In meteorology and climatology, the utilization 
of interpolation methods is of paramount 
importance to accurately represent atmospheric 
phenomena. A comparison of different 
interpolation techniques, such as Cressman 
and IBOMAS, is significant because it provides 
insights into their efficacy in handling sparse 
meteorological data. This comparative analysis 
sheds light on their respective strengths 
and weaknesses, aiding the refinement of 
atmospheric modeling techniques. By assessing 
how each method addresses data sparsity, 
researchers can gain a deeper understanding of 
its performance in capturing the atmospheric 
dynamics. Hence, investigating the error 
between Cressman and IBOMAS will facilitate 
advancements in atmospheric science by 
enhancing the accuracy and reliability of 
numerical weather prediction models.

R=10 R=30 R=60

Error 
metric 

IBOMAS 1 IBOMAS 2 Cressman IBOMAS 1 IBOMAS 2 Cressman IBOMAS 1 IBOMAS 2 Cressman

MAE 0.347 0.129 0.331 0.347 0.129 0.500 0.347 0.129 0.535

MSE 0.281 0.103 0.943 0.281 0.103 1.951 0.281 0.103 2.178

RSS 2460.204 904.602 8261.612 2460.204 904.602 17089.488 2460.204 904.602 19080.176

RMSE 0.530 0.321 0.971 0.530 0.321 1.397 0.530 0.321 1.476

R^2 0.975 0.991 0.917 0.975 0.991 0.828 0.975 0.991 0.808

Accuracy 0.975 0.991 0.917 0.975 0.991 0.828 0.975 0.991 0.808
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The model validation metrics (MAE, MSE, RMSE, 
R², and accuracy) tended to be close to zero or 
unity, indicating a good fit to the observed data 
and greater accuracy and effectiveness of the 
methods, as shown in Table 1.

The results of this study indicate that the 
IBOMAS method, particularly in its second pass, 
demonstrates significantly superior performance 
in terms of accuracy and explanatory capacity 
compared with the Cressman method. The choice 
of the influence radius is a determining factor for 
the effectiveness of both methods. In the second 
pass of IBOMAS, a mean squared error of 0.129 
was obtained across all evaluated radii, revealing 
a 22% difference between the passes of IBOMAS 
in contrast to the 21% variation observed in the 
Cressman method. Accuracy was assessed using 
the coefficient of determination, achieving 98% 
effectiveness in the first pass of IBOMAS and 
99.9% in the second, whereas the Cressman 
method attained 92% effectiveness with an 
influence radius of 10. These findings suggest 
that minimizing both the underestimation 
and overestimation of values can reduce 
errors and yield more reliable results, thereby 
recommending the use of IBOMAS to improve 
missing data estimates in similar geographical 
contexts.

The methodologies of IBOMAS and Cressman 
employ a half-weight approach, with the 
distinction that the Cressman weight function is 
determined based on the distance between the 
observed values and the influence radius, which 
is determined subjectively to ensure that all grid 
points represent the data points as well as possible 
and are sometimes chosen to limit the effect 
of a station (21). In contrast, IBOMAS utilizes a 
Gaussian function that uses a scale parameter to 
compute the weights for neighboring data points 
based on their distances. Subsequently, the scale 
parameter is refined by assessing the difference 
between the estimated data in the first pass 
and the corresponding observed values, thereby 
improving accuracy (5).

The influence radius is a critical parameter in 
interpolation because its accuracy is largely 
dependent on the underlying data distribution. 
A reduced influence radius (R) may omit the 
essential information during the interpolation 

IV. DISCUSSION

process, leading to excessively smooth and 
inaccurate estimates. Conversely, an overly broad 
influence radius can result in the inclusion of 
irrelevant data, potentially introducing a bias into 
the results. Therefore, three different influence 
radii were evaluated: 10 km, 30 km, and 60 km, 
considering that meteorological stations record 
data for meteorological variables within a radius 
of 25 km. It was observed that, in contrast to 
IBOMAS, the Cressman method was particularly 
sensitive to the selection of these three influence 
radii (17, 22, 23).

The inherent nature of Cressman poses 
challenges when the data distribution is uneven. 
By contrast, IBOMAS ensures that the weights are 
never nullified by utilizing all observations when 
estimating the values. Moreover, IBOMAS allows 
for estimates at all observed points, thereby 
avoiding artificial discontinuities present in the 
Cressman method (2,4,11).

During the first pass, IBOMAS interpolates by 
employing a scale parameter to calculate the 
weights for neighboring data points based on 
their distances. In the second pass, IBOMAS 
adjusts the scale parameter using the disparity 
between the imputed data from the first pass and 
the observed data, thereby enhancing precision. 
The objective is to reduce the interpolation error 
with successive passes (24), thereby achieving 
improved results in which the estimated values 
closely align with or match the observed data, 
ultimately attaining acceptable convergence, as 
shown in Fig. 5.

In both the Cressman and IBOMAS methods, 
the second pass mirrors the observed data. 
Furthermore, cross-validation methods indicated 
an accuracy and regression coefficients ranging 
between 80 and 99.9%. In this study, we 
conducted evaluations by using various radii. No 
significant differences were observed for IBOMAS 
at ratios of 10, 30, and 60. Conversely, in the 
Cressman method, there was an 11% disparity 
in the similarity of the estimated data, owing to 
the dependence of the weighted function on the 
radius of influence (14).

Other variations in successive corrections can be 
evaluated, as indicated in (25), considering the 
detrended data. The choice of the number of 
iterations was decided after the analysis, ensuring 
that the method adequately fits the observed 
phenomenon.
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The analysis of temperature data from the Alaó 
Meteorological Station showed the effectiveness 
of the Cressman and IBOMAS methods in 
estimating the missing values. IBOMAS in the 
second pass showed superior accuracy and 
better convergence with the original data. This 
method uses Gaussian weighted functions and 
multiple iterations to capture periodic patterns 
and underlying trends with a high fidelity.

The Cressman method was effective, although 
it exhibited limitations with larger radii of 
influence, resulting in both underestimation 
and overestimation. A radius of 10 provided the 
best fit for both methods; however, IBOMAS 
maintained a better consistency at radii of 30 
and 60. In the error analysis, IBOMAS achieved 
an MAE of 0.129, MSE of 0.103, and R² of 0.991 
in its second pass, significantly outperforming 
Cressman's method.
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(Alternative Energies and Environment Research 
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(IDIPI-306).
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