76 ISSN 2477-9105 Número 29 Vol.1 (2023) DOI: https://doi.org/10.47187/perf.v1i29.207 5. Ramos W, Pretell V, Lujan C. Catalyc pyrolysis of polypropylene residues for the obtaining of liquid fuels. Proc LACCEI Int Mul-conference Eng EducTechnol. 2019;2019-July(January). 6. Gosgot Angeles W, Rivera López RY, Rascón J, Barrena Gurbillón MÁ, Ordinola Ramirez CM, Oliva M, et al. Valorización energéca de residuos orgánicos mediante pirolisis. Rev Invesg Agroproducción Sustentable [Internet]. 2021;5(2):26. Available from: hps://www. researchgate.net/publicaon/356897897_Valorizacion_energeca_d e_residuos_organicos_ mediante_pirolisis 7. Afanasjeva, Natalia et. al. Lignocellulosic biomass. Part I: Biomass transformaon. J Sci with Technol Appl. 2017;3(2017):27–43. 8. Rodríguez-Machín L, López-Díaz I, Ocaña-Guevara VS, Pérez-Bermúdez RA. Termo-conversión de biomasa por pirólisis. Tendencias de invesgación y desarrollo. (Spanish). Biomass thermo-conversion by pyrolysis Trends Res Dev [Internet]. 2012;39(1):27–32. Available from: hp://search.ebscohost.com/ login.aspx?direct=true&db=a9h&AN=77050346&la ng=es&site=ehost-live 9. Rocha MV, Renzini MS, Pierella LB. Co-pirólisis de biomasa lignocelulósica y residuos pláscos para producir biocombusbles sustentables. Ajea. 2020;(5). 10. Spanevello RA, Suárez AG, Saro AM. Alternave sources of starng materials. Educ Quim [Internet]. 2013;24(SPL.ISSUE1):124–31. Available from: hp://dx.doi.org/10.1016/S0187- 893X(13)72505-9 11. Mancheno M, Astudillo S, Arévalo P, Malo I, Naranjo T, Espinoza J. Aprovechamiento energéco de residuos pláscos obteniendo combusbles líquidos, por medio del proceso de pirólisis. La Granja. 2016;23(1):53–9. 12. Zulia U, Urdaneta G, Joheni A, Zulia U. Manejo de residuos sólidos en América Lana y el Caribe. Choice Rev Online. 2006;44(03):44-1347-44–1347. 13. Schwarz AE, Ligthart TN, Godoi Bizarro D, De Wild P, Vreugdenhil B, van Harmelen T. Plasc recycling in a circular economy; determining environmental performance through an LCA matrix model approach. Waste Manag [Internet]. 2021;121:331–42. Available from: hps://doi. org/10.1016/j.wasman.2020.12.020 14. Baray-Guerrero M del R, Porras-Flores DA, Hoffmann-Esteves HE, Manjarrez-Dominguez CB. Tratamiento de la biomasa lignocelulósica mediante la pirolisis lenta y a baja temperatura para la producción de biocombusbles. Rev Energías Renov. 2019;3(9):1–9. 15. Medina MP, Sánchez A, Hernández JF. Pirólisis de bagazo de caña a escala de laboratorio. Tecnol Química [Internet]. 2008;XXVIII(2):61–70. Available from: hps://www.redalyc.org/arculo. oa?id=445543756008 16. Wang Z, Burra KG, Lei T, Gupta AK. Co-pyrolysis of waste plasc and solid biomass for synergisc producon of biofuels and chemicals-A review. Prog Energy Combust Sci [Internet]. 2021;84:51. Available from: hps://doi.org/10.1016/j.pecs.2020.100899 17. Chen L, Yang K, Huang J, Liu P, Yang J, Pan Y, et al. Experimental and kinec study on flash pyrolysis of biomass via on-line photoionizaon mass spectrometry. Appl Energy Combust Sci [Internet]. 2022;9(November 2021):100057. Available from: hps://doi.org/10.1016/j.jaecs.2022.100057 18. Uzoejinwa BB, He X, Wang S, El-Fatah Abomohra A, Hu Y, Wang Q. Co- pyrolysis of biomass and waste plascs as a thermochemical conversion technology for high-grade biofuel producon: Recent progress and future direcons elsewhere worldwide. Energy Convers Manag [Internet]. 2018;163(December 2017):468–92. Available from: hps://doi.org/10.1016/j. enconman.2018.02.004 19. Gómez JM. Analysis of the variaon in the efficiency in the producon of biofuels in Lan America. Estud Gerenciales [Internet]. 2016;32(139):120–6. Available from: hp://dx.doi.org/10.1016/j. estger.2016.01.001