DETERMINANTES GENÉTICOS Y SUS MECANISMOS DE ACCIÓN IMPLICADOS EN LA RESISTENCIA BACTERIANA A METALES PESADOS: UNA REVISIÓN.

Autores/as

  • Joana Fernanda Iza Guaman Escuela Superior Politécnica de Chimborazo, Facultad de Ciencias, Carrera de Ingeniería en Biotecnología Ambiental / Grupo de Energias Alternativas y Ambiente, Riobamba, Ecuador.
  • Celso Guillermo Recalde Moreno Escuela Superior Politécnica de Chimborazo, Facultad de Ciencias, Carrera de Ingeniería en Biotecnología Ambiental / Grupo de Energias Alternativas y Ambiente, Riobamba, Ecuador.
  • Cristian Fabricio Iza Guaman Universitat Politécnica de Valéncia, Escuela Técnica Superior de Ingeniería del Diseño ETSID, Valencia, España.

DOI:

https://doi.org/10.47187/perf.v1i27.147

Palabras clave:

Proteínas, enzimas, transcripción, transgénicos

Resumen

Se identificó y describió los principales determinantes genéticos implicados en la resistencia bacteriana a metales pesados reportados en la literatura, así como sus usos a nivel biotecnológico y ambiental. Se llevó a cabo una revisión bibliográfica de información de los últimos 10 años encontrados en revistas con indexación SJR disponibles en las diferentes bases de datos; bosquejando la situación actual del conocimiento sobre el tema y realizando comparaciones cualitativas entre las investigaciones seleccionadas. Las bacterias se encuentran en constante evolución y se vuelven más resistentes gracias a la adquisición de genes que les permite hacer frente a los efectos tóxicos de los metales. Por ello, se compiló desde varios autores los determinantes genéticos de resistencia bacteriana para los metales, como el arsénico, mercurio, cromato y cadmio siendo respectivamente: ars, mer, chr, cad y czc; estos sistemas pueden localizarse en el cromosoma o plásmidos de las bacterias. Se describe el mecanismo de acción que codifica cada determinante, siendo la regulación y la desintoxicación enzimática los principales mecanismos. Finalmente, se comparó las aplicaciones biotecnológicas y ambientales de los determinantes, encontrándose un amplio uso en la construcción de biosensores y organismos genéticamente modificados.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Kruger MC, Bertin PN, Heipieper HJ, Arsène-Ploetze F. Bacterial metabolism of environmental arsenic - Mechanisms and biotechnological applications. Appl Microbiol Biotechnol. 2013;97(9):3827–41.

Ordoñez OF, Lanzarotti E, Kurth D, Cortez N. Genome comparison of two Exiguobacterium strains from high altitude andean lakes with different arsenic resistance: identification and 3D modeling of the Acr3 efflux pump. Front Environ Sci. 2015;3(July):1–12.

Andres J, Bertin PN. The microbial genomics of arsenic. FEMS Microbiol Rev. 2016;40(2):299–322.

Fekih I Ben, Zhang C, Li YP, Zhao Y, Alwathnani HA, Saquib Q, et al. Distribution of arsenic resistance genes in prokaryotes. Front Microbiol [Internet]. 2018;9(OCT):1–11. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205960/

Uhrynowski W, Radlinska M, Drewniak L. Genomic analysis of Shewanella sp. O23s—the natural host of the psheb plasmid carrying genes for arsenic resistance and dissimilatory reduction. Int J Mol Sci. 2019;20(5).

Antonucci I, Gallo G, Limauro D, Contursi P, Ribeiro AL, Blesa A, et al. An ArsR/SmtB family member regulates arsenic resistance genes unusually arranged in Thermus thermophilus HB27. Microb Biotechnol. 2017;10(6):1690–701.

Shen Z, Han J, Wang Y, Sahin O, Zhang Q. The Contribution of ArsB to Arsenic Resistance in Campylobacter jejuni. PLoS One. 2013;8(3):1–8.

Zhao C, Zhang Y, Chan Z, Chen S, Yang S. Insights into arsenic multi-operons expression and resistance mechanisms in Rhodopseudomonas palustris CGA009. Front Microbiol. 2015;6(SEP):1–8.

Villadangos AF, Van Belle K, Wahni K, Tamu Dufe V, Freitas S, Nur H, et al. Corynebacterium glutamicum survives arsenic stress with arsenate reductases coupled to two distinct redox mechanisms. Mol Microbiol. 2011;82(4):998–1014.

Xiao KQ, Li LG, Ma LP, Zhang SY, Bao P, Zhang T, et al. Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents. Environ Pollut [Internet]. 2016;211:1–8. Available from: http://dx.doi.org/10.1016/j.envpol.2015.12.023

Suhadolnik MLS, Costa PS, Castro GM, Lobo FP, Nascimento AMA. Comprehensive insights into arsenic- and iron-redox genes, their taxonomy and associated environmental drivers deciphered by a meta-analysis. Environ Int. 2021;146(106234):1–11.

Prieto-Barajas CM, Elorza-Gómez JC, Loeza-Lara PD, Sánchez-Yáñez JM, Valencia-Cantero E, Santoyo G. Identificación y análisis de genes ars en cepas de Bacillus hipertolerantes al arsénico, aisladas de pozas termales en Araró, México. TIP Rev Espec en Ciencias Químico-Biológicas [Internet]. 2018;21(Iii):22–9. Available from: http://creativecommons.org/licenses/by-nc-nd/4.0/)

Li X, Zhang L, Wang G. Genomic evidence reveals the extreme diversity and wide distribution of the arsenic-related genes in Burkholderiales. PLoS One. 2014;9(3):1–11.

Jia MR, Tang N, Cao Y, Chen Y, Han YH, Ma LQ. Efficient arsenate reduction by As-resistant bacterium Bacillus sp. strain PVR-YHB1-1: Characterization and genome analysis. Chemosphere [Internet]. 2019;218:1061–70. Available from: https://doi.org/10.1016/j.chemosphere.2018.11.145

Sousa T, Branco R, Piedade AP, Morais P V. Hyper accumulation of arsenic in Mutants of Ochrobactrum tritici silenced for arsenite efflux pumps. 2015;1–14.

Shen Z, Luangtongkum T, Qiang Z, Jeon B, Wang L, Zhang Q. Identification of a novel membrane transporter mediating resistance to organic arsenic in Campylobacter jejuni. Antimicrob Agents Chemother. 2014;58(4):2021–9.

Jiang H, Liang Y, Yin H, Xiao Y, Guo X, Xu Y, et al. Effects of arsenite resistance on the growth and functional gene expression of Leptospirillum ferriphilum and Acidithiobacillus thiooxidans in pure culture and coculture. Biomed Res Int. 2015;2015:1–13.

Yang HC, Rosen BP. New mechanisms of bacterial arsenic resistance. Biomed J [Internet]. 2016;39(1):5–13. Available from: http://dx.doi.org/10.1016/j.bj.2015.08.003

Villadangos AF, Fu HL, Gil JA, Messens J, Rosen BP, Mateos LM. Efflux permease CgAcr3-1 of Corynebacterium glutamicum is an arsenite-specific antiporter. J Biol Chem [Internet]. 2012;287(1):723–35. Available from: http://dx.doi.org/10.1074/jbc.M111.263335

Yu X, Zheng W, Bhat S, Aquilina JA, Zhang R. Transcriptional and posttranscriptional regulation of Bacillus sp. CDB3 arsenic-resistance operon ars1. PeerJ [Internet]. 2015;2015(9):1–15. Available from: https://peerj.com/articles/1230/

Yoshinaga M, Rosen BP. A C·As lyase for degradation of environmental organoarsenical herbicides and animal husbandry growth promoters. Proc Natl Acad Sci USA [Internet]. 2014;111(21):7701–6. Available from: www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1403057111/-/DCSupplemental.

Yang J, Abdul Salam AA, Rosen BP. Genetic mapping of the interface between the ArsD metallochaperone and the ArsA ATPase. Mol Microbiol [Internet]. 2011;79(4):872–81. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2958.2010.07494.x

Liu X, Hu Q, Yang J, Huang S, Wei T, Chen W, et al. Selective cadmium regulation mediated by a cooperative binding mechanism in CadR. Proc Natl Acad Sci U S A. 2019;116(41):20398–403.

Firrincieli A, Presentato A, Favoino G, Marabottini R, Allevato E, Stazi SR, et al. Identification of resistance genes and response to arsenic in Rhodococcus aetherivorans BCP1. Front Microbiol. 2019;10(MAY):1–13.

Nadar VS, Yoshinaga M, Pawitwar SS, Kandavelu P, Sankaran B, Rosen BP. Structure of the ArsI C-As Lyase: Insights into the mechanism of degradation of organoarsenical herbicides and growth promoters. J Mol Biol [Internet]. 2016;428(11):1–32. Available from: http://dx.doi.org/10.1016/j.jmb.2016.04.022

Chen J, Nadar VS, Rosen BP. A novel MAs(III)-selective ArsR transcriptional repressor. Mol Microbiol. 2017;106(3):469–78.

Páez-Espino AD, Nikel PI, Chavarría M, Lorenzo V De, Rica C, José S, et al. ArsH protects Pseudomonas putida from oxidative damage caused by exposure to arsenic. Environ Microbiol. 2020;22:2230–42.

Mindlin S, Petrenko A, Kurakov A, Beletsky A, Mardanov A, Petrova M. Resistance of Permafrost and Modern Acinetobacter lwoffii Strains to Heavy Metals and Arsenic Revealed by Genome Analysis. Biomed Res Int. 2016;2016:1–10.

Chen J, Bhattacharjee H, Rosen BP. ArsH is an organoarsenical oxidase that confers resistance to trivalent forms of the herbicide monosodium methylarsenate and the poultry growth promoter roxarsone. Mol Microbiol. 2015;96(5):1042–52.

Dash HR, Mangwani N, Das S. Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium Bacillus thuringiensis PW-05. Investig en ciencias Ambient y Contam. 2013;1–12.

Møller AK, Barkay T, Hansen MA, Norman A, Hansen LH, Sørensen SJ, et al. Mercuric reductase genes (merA) and mercury resistance plasmids in High Arctic snow, freshwater and sea-ice brine. FEMS Microbiol Ecol [Internet]. 2013;87:52–63. Available from: https://academic.oup.com/femsec/article/87/1/52/508980

Wang D, Huang S, Liu P, Liu X, He Y, Chen W, et al. Structural analysis of the Hg2+ regulatory protein Tn501 MerR from Pseudomonas aeruginosa. Nat Publ Gr. 2016;(August):1–9.

Boyd E, Barkay T. The mercury resistance operon: from an origin in a geothermal environment to an efficient detoxification machine. Front Microbiol. 2012;3(10):1–13.

Jan AT, Azam M, Choi I, Ali A, Haq QMR. Analysis for the presence of determinants involved in the transport of mercury across bacterial membrane from polluted water bodies of India. Brazilian J Microbiol [Internet]. 2016;47(1):55–62. Available from: http://dx.doi.org/10.1016/j.bjm.2015.11.023

Sone Y, Nakamura R, Pan-hou H, Itoh T, Kiyono M. Role of MerC , MerE , MerF , MerT, and/or MerP in resistance to mercurials and the transport of mercurials in Escherichia coli. Biol Pharm Bull. 2013;36(November):1835–41.

Sone Y, Uraguchi S, Takanezawa Y, Nakamura R, Pan-hou H, Kiyono M. Cysteine and histidine residues are involved in Escherichia coli Tn 21 MerE methylmercury transport. Front Microbiol. 2017;7:1994–9.

Ly K, Ryan LO, Mitra AK. Overexpression, purification and biophysical characterisation of Escherichia coli MerT. PROTEIN Expr Purif [Internet]. 2014;(December):1–5. Available from: http://dx.doi.org/10.1016/j.pep.2014.11.016

Ruuskanen MO, Poulain AJ. Swift evolutionary response of microbes to a rise in anthropogenic mercury in the Northern Hemisphere. ISME J [Internet]. 2020;(14:788–800):788–800. Available from: http://dx.doi.org/10.1038/s41396-019-0563-0

Chenia HY, Jacobs A. Antimicrobial resistance, heavy metal resistance and integron content in bacteria isolated from a South African tilapia aquaculture system. Dis Aquat Organ. 2017;126(3):199–209.

Zhang J, Zeng Y, Liu B, Deng X. MerP/MerT-mediated mechanism: A different approach to mercury resistance and bioaccumulation by marine bacteria. J Hazard Mater [Internet]. 2020;388(January):122062. Available from: https://doi.org/10.1016/j.jhazmat.2020.122062

Lian P, Guo H, Riccardi D, Dong A, Parks JM, Xu Q, et al. X‑ray structure of a Hg2+ complex of mercuric reductase (MerA) and quantum mechanical/molecular mechanical study of Hg2+ transfer between the C‑terminal and buried catalytic site cysteine pairs. Biochemistry. 2014;53(46):7211–22.

Johs A, Harwood IM, Parks JM, Nauss RE, Smith JC, Liang L, et al. Structural characterization of intramolecular Hg2+ transfer between flexibly linked domains of mercuric ion reductase. J Mol Biol [Internet]. 2011;413(3):639–56. Available from: http://dx.doi.org/10.1016/j.jmb.2011.08.042

Matsui K, Yoshinami S, Narita M, Chien M, Phung LT, Silver S, et al. Mercury resistance transposons in Bacillus strains from different geographical regions. 2016;(December 2015):1–8.

Taghavi S, Zhu W, Ramos J, Lelie D Van Der. Comparative genomics and functional analysis of niche-specie. FEMS Microbiol Rev [Internet]. 2011;35:299–323. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3056050/

Naguib MM, El-Gendy AO, Khairalla AS. Microbial diversity of mer operon genes and their potential rules in mercury bioremediation and resistance. Open Biotechnol J. 2018;12(1):56–77.

Guo H, Parks JM, Johs A, Smith JC. Mercury detoxification by bacteria: simulations of transcription activation and mercury – carbon bond cleavage. 2011;(Md):311–24.

Silva PJ, Rodrigues V. Mechanistic pathways of mercury removal fromthe organomercurial lyase active site. PeerJ. 2015;2015(7):1–18.

Zheng R, Wu S, Ma N, Sun C. Genetic and physiological adaptations of marine bacterium Pseudomonas stutzeri 273 to mercury stress. 2018;9(April):1–14.

Adekanmbi AO, Adelowo OO, Okoh AI, Fagade OE. Metal-resistance encoding gene-fingerprints in some bacteria isolated from wastewaters of selected printeries in Ibadan, South-western Nigeria. J Taibah Univ Sci. 2019;13(1):266–73.

Hwang H, Hazel A, Lian P, Smith JC, Gumbart JC, Parks JM. A Minimal membrane metal transport system: dynamics and energetics of mer proteins. J Comput Chem. 2020;41(6):528–37.

Caballero-Flores GG, Acosta-Navarrete YM, Ramírez-Díaz MI, Silva-Sánchez J, Cervantes C. Chromate-resistance genes in plasmids from antibiotic-resistant nosocomial enterobacterial isolates. FEMS Microbiol Lett. 2012;327(2):148–54.

Baaziz H, Gambari C, Boyeldieu A, Chaouche AA, Alatou R, Fons M. ChrA SO , the chromate efflux pump of Shewanella oneidensis, improves chromate survival and reduction. 2017;(Vi):1–15.

Henson MW, Domingo JWS, Kourtev PS, Jensen R V., Dunn JA, Learman DR. Metabolic and genomic analysis elucidates strain-level variation in Microbacterium sp. isolated from chromate contaminated sediment. PeerJ. 2015;2015(11):1–17.

Morais Vasconcelos P, Branco R, Romeu F. Chromium resistance strategies and toxicity: what makes Ochrobactrum tritici 5bvl1 a strain highly resistant. Biometals (2011) [Internet]. 2011;24:401–10. Available from: https://link.springer.com/article/10.1007%2Fs10534-011-9446-1

Acosta-Navarrete YM, León-Márquez YL, Salinas-Herrera K, Jácome-Galarza IE, Meza-Carmen V, Ramírez-Díaz MI, et al. Expression of the six chromate ion transporter homologues of Burkholderia xenovorans LB400. Microbiol (United Kingdom). 2014;160(PART 2):287–95.

Bazzis H. Isolation of Shewanella sp. from Algeria and characterization of a system involved in detoxification of chromate [Internet]. Freres Mentouri Cinstantine 1 University; 2018. Available from: http://archives.umc.edu.dz/handle/123456789/136458

Pradhan SK, Singh NR, Rath BP, Thatoi H. Bacterial chromate reduction: A review of important genomic, proteomic, and bioinformatic analysis. Crit Rev Environ Sci Technol. 2016;46(21–22):1–82.

Rangel D, Dussan J. International Biodeterioration & Biodegradation Transcriptional analysis and molecular dynamics simulations reveal the mechanism of toxic metals removal and e ffl ux pumps in Lysinibacillus. Int Biodeterior Biodegrad [Internet]. 2018;127(June 2017):46–61. Available from: https://doi.org/10.1016/j.ibiod.2017.11.016

Verduzco-rosas EASJLA, Julia A. An Lrp-type transcriptional regulator controls expression of the Bacillus subtilis chromate transporter. Antonie Van Leeuwenhoek. 2013;104 (941–948):1–8.

Paisio CE, González PS, Talano MA, Agostini E. Remediación biológica de Mercurio : Recientes avances Resumen Biological remediation of Mercury : Recent advances Abstract. 2012; 3(2):119–46.

Branco R, Morais P. Two superoxide dismutases from TnOtchr are involved in detoxification of reactive oxygen species induced by chromate. BMC Microbiol [Internet]. 2016;16(1):1–10. Available from: http://dx.doi.org/10.1186/s12866-016-0648-0

Klonowska A, Moulin L, Ardley JK, Braun F, Gollagher MM, Zandberg JD, et al. Novel heavy metal resistance gene clusters are present in the genome of Cupriavidus neocaledonicus STM 6070, a new species of Mimosa pudica microsymbiont isolated from heavy-metal-rich mining site soil. BMC Genomics. 2020;21(1):1–18.

Mergeay M, Houdt R Van. Metal response in Cupriavidus metallidurans. Biometals. 2015;I:1–97.

Hoogewerf AJ, Dyk LA Van, Buit TS, Roukema D, Resseguie E, Plaisier C, et al. Functional characterization of a cadmium resistance operon in Staphylococcus aureus ATCC12600: CadC does not function as a repressor. J Basic Microbiol. 2015;55:148–59.

Yu X, Ding Z, Ji Y, Zhao J, Liu X, Tian J, et al. An operon consisting of a p-type ATPase gene and a transcriptional regulator gene responsible for cadmium resistances in Bacillus vietamensis 151-6 and Bacillus marisflavi 151-25. BMC Microbiol. 2020;20(1):1–13.

Zhang H, Zhou Y, Bao H, Zhang L, Wang R, Zhou X. Plasmid-borne cadmium resistant determinants are associated with the susceptibility of Listeria monocytogenes to bacteriophage. Microbiol Res [Internet]. 2015;172:1–6. Available from: http://dx.doi.org/10.1016/j.micres.2015.01.008

Parsons C, Lee S, Kathariou S. Dissemination and conservation of cadmium and arsenic resistance determinants in Listeria and other Gram-positive bacteria. wiley. 2020;(December 2019):560–9.

Guo S, Mahillon J. pGIAK1, a heavy metal resistant plasmid from an obligate alkaliphilic and halotolerant bacterium isolated from the Antarctic Concordia Station confined environment. PLoS One. 2013;8(8):1–8.

Pombinho R, Camejo A, Vieira A, Reis O, Carvalho F, et al. Listeria monocytogenes CadC regulates cadmium efflux and fine tunes lipoprotein localization to escape the host immune response and promote infection. J Infect Dis. 2017;215(9):1468–79.

Gómez-Sanz E, Kadlec K, Feßler AT, Torres C. Analysis of a novel erm ( T ) - and cadDX - carrying plasmid from methicillin- susceptible Staphylococcus aureus ST398-t571 of human origin. J Antimicrob Chemother [Internet]. 2013;68(October 2012):471–3. Available from: https://academic.oup.com/jac/article/68/2/471/676191

Argudín MA, Hoefer A, Butaye P. Heavy metal resistance in bacteria from animals. Res Vet Sci [Internet]. 2019;122:1–57. Available from: https://doi.org/10.1016/j.rvsc.2018.11.007

Chen J, Sun GX, Wang XX, Lorenzo V De, Rosen BP, Zhu YG. Volatilization of arsenic from polluted soil by Pseudomonas putida engineered for expression of the arsM arsenic (III) S-adenosine methyltransferase gene. Environ Sci Technol. 2014;48(17):10337–44.

Prabhakaran R, Rajkumar SN, Ramprasath T, Selvam GS. Identification of promoter P cadR, in silico characterization of cadmium resistant gene cadR and molecular cloning of promoter PcadR from Pseudomonas aeruginosa BC15. Toxicol Ind Health. 2018;34(12):819–33.

Prabaharan C, Kandavelu P, Packianathan C, Rosen BP, Thiyagarajan S, Biotechnology A. Structures of two ArsR As(III)-responsive transcriptional repressors : implications for the mechanism of derepression. J Struct Biol. 2020;207(2):209–17.

Jain S, Bhatt A. Molecular and in situ characterization of cadmium-resistant diversified extremophilic strains of Pseudomonas for their bioremediation potential. 2014;297–304.

Stahl A, Pletzer D, Mehmood A, Ullrich MS. Marinobacter adhaerens HP15 harbors two CzcCBA efflux pumps involved in zinc detoxification. Antonie Van Leeuwenhoek. 2015; 8 (6):1-5

Mazhar SH, Herzberg M, Fekih I Ben, Zhang C. Comparative insights into the complete genome sequence of highly metal resistant Cupriavidus metallidurans srtrain BS1 isolated from a gold – copper mine. Front Microbiol. 2020; 11(2):1-21

Nies DH. The biological chemistry of the transition metal “transportome” of Cupriavidus metallidurans. Cupriavidus. 2016;23–6.

Sharma P, Asad S, Ali A. Construction of an Escherichia coli biosensor for Cd2+ and sensitivity analysis by low-temperature induction. J Biosci. 2013;38(2):251–8.

Huang CW, Wei CC, Liao VHC. A low cost color-based bacterial biosensor for measuring arsenic in groundwater. Chemosphere [Internet]. 2015;141:44–9. Available from: http://dx.doi.org/10.1016/j.chemosphere.2015.06.011

Roointan A, Shabab N, Karimi J, Rahmani A, Alikhani MY, saidijam M. Designing a bacterial biosensor for detection of mercury in water solutions. Turkish J Biol. 2015;39(4):550–5.

Tynecka Z, Malm A, Gos Z. Cd2+ extrusion by P-type Cd2+-ATPase of Staphylococcus aureus 17810R via energy-dependent Cd2+/H+ exchange mechanism. 2016;651–63.

Branco R, Cristóvão A, Morais P V. Highly sensitive, highly specific whole-cell bioreporters for the detection of chromate in environmental samples. PLoS One. 2013;8(1):13–7.

Li R, Wu H, Ding J, Li N, Fu W, Gan L, et al. Transgenic merA and merB expression reduces mercury contamination in vegetables and grains grown in mercury contaminated soil. Plant Cell Rep. 2020;39 (10):1369–80.

Zhou X, Li J, Wang W, Yang F, Fan B, Zhang C, et al. Removal of chromium (VI) by Escherichia coli cells expressing cytoplasmic or surface-displayed chrB: A comparative study. J Microbiol Biotechnol. 2020;30(7):996–1004.

Xu S, Sun B, Wang R, He J, Xia B, Xue Y, et al. Overexpression of a bacterial mercury transporter MerT in Arabidopsis enhances mercury tolerance. Biochem Biophys Res Commun [Internet]. 2017;490(2):528–34. Available from: http://dx.doi.org/10.1016/j.bbrc.2017.06.073

Descargas

Publicado

2022-01-31

Cómo citar

Iza Guaman, J. F., Recalde Moreno, C. G., & Iza Guaman, C. F. (2022). DETERMINANTES GENÉTICOS Y SUS MECANISMOS DE ACCIÓN IMPLICADOS EN LA RESISTENCIA BACTERIANA A METALES PESADOS: UNA REVISIÓN. Perfiles, 1(27), 26-38. https://doi.org/10.47187/perf.v1i27.147