PRODUCCIÓN DE HIDRÓGENO A PARTIR DE BIOMASA POR MEDIO DE FERMENTACIÓN OSCURA: UNA REVISIÓN

Autores/as

  • Orlando Castiblanco Fundación Universidad de América, Facultad de Ingeniería, Departamento de Ingeniería Química, Bogotá, Colombia.
  • David Guerrero Fundación Universidad de América, Facultad de Ingeniería, Departamento de Ingeniería Química, Bogotá, Colombia.

DOI:

https://doi.org/10.47187/perf.v1i30.237

Palabras clave:

Hidrógeno, fermentación oscura, medio ambiente, biomasa y energía

Resumen

El hidrógeno es un vector energético y una materia prima industrial que se puede obtener por diferentes métodos, entre los que se tiene la fermentación oscura, y a partir de diferentes fuentes de biomasa, donde las condiciones y el rendimiento se ven afectados por el pH, el inóculo, el sustrato, los nutrientes, la temperatura y el tipo de reactor. Los géneros bacterianos Enterobacter, Bacillus y Clostridium, dadas sus características fisicoquímicas, generan unos rendimientos aproximadamente de 2 mol H2/mol glucosa. El artículo destaca que este proceso presenta ventajas significativas, como la utilización de materias primas renovables y la reducción de emisiones de gases de efecto invernadero en comparación con los métodos tradicionales basados en combustibles fósiles. Además, se destaca la importancia del rol del ingeniero químico de cara a mejorar la eficiencia y la estabilidad del proceso, a superar los desafíos técnicos y a mitigar los efectos adversos sobre el medio ambiente.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Claassen, P. A., & De Vrije, T. Non-thermal production of pure hydrogen from biomass: HYVOLUTION. International Journal of Hydrogen Energy. 2006; 31(11): 1416-1423.

Romero, M. G. Biocombustibles y producción de biohidrógeno. MoleQla: revista de Ciencias de la Universidad Pablo de Olavide. 2020; (38): 8.

Jahanger, A., Ozturk, I., Onwe, J. C., Joseph, T. E., & Hossain, M. R. Do technology and renewable energy contribute to energy efficiency and carbon neutrality? Evidence from top ten manufacturing countries. Sustainable Energy Technologies and Assessments. 2023; 56: 103084.

Parmesan, C., Morecroft, M. D., & Trisurat, Y. Climate change 2022: Impacts, adaptation and vulnerability (Doctoral dissertation, GIEC). 2022.

Ueckerdt, F., Verpoort, P., Anantharaman, R., Bauer, C., Beck, F., Longden, T., & Roussanaly, S. On the cost competitiveness of blue and green hydrogen. Available at SSRN 4501786. 2023.

Sinha, P., & Pandey, A. An evaluative report and challenges for fermentative biohydrogen production. International Journal of Hydrogen Energy. 2011; 36(13): 7460-7478.

Castiblanco, O., & Cárdenas, D. J. Producción de hidrógeno y su perspectiva en Colombia: una revisión. Gestión y Ambiente. 2020; 23(2): 299-311.

Ananthi, V., Ramesh, U., Balaji, P., Kumar, P., Govarthanan, M., & Arun, A. A review on the impact of various factors on biohydrogen production. International Journal of Hydrogen Energy. 2022.

Liu, X., Zhu, Y., & Yang, S. T. Butyric acid and hydrogen production by Clostridium tyrobutyricum ATCC 25755 and mutants. Enzyme and Microbial Technology. 2006; 38(3-4): 521-528.

Zhang, T., Liu, H., & Fang, H. H. Biohydrogen production from starch in wastewater under thermophilic condition. Journal of environmental management. 2003; 69(2): 149-156.

Londoño, S. A. B., & Chaparro, T. R. Producción de biohidrógeno a partir de residuos mediante fermentación oscura: una revisión crítica (1993-2011). Ingeniare. Revista chilena de ingeniería. 2012; 20(3): 398-411.

Mohanakrishna, G., Sneha, N. P., Rafi, S. M., & Sarkar, O. Dark fermentative hydrogen production: Potential of food waste as future energy needs. Science of The Total Environment. 2023; 888: 163801.

Pasquevich, D. Tecnología del hidrógeno. Petrotecnia. 2004; 1: 55.

Martínez-Barrera, G., Martínez-López, M., & Téllez-López, A. Hidrógeno: tecnologías de producción, almacenamiento y aplicaciones. Consejo Ejecutivo, 100. 2022.

Taherian, Z., Khataee, A., Han, N., & Orooji, Y. Hydrogen production through methane reforming processes using promoted-Ni/mesoporous silica: A review. Journal of Industrial and Engineering Chemistry. 2022; 107: 20-30.

Kumar, S. S., & Lim, H. An overview of water electrolysis technologies for green hydrogen production. Energy reports. 2022; 8: 13793-13813.

Vidas, L., & Castro, R. Recent developments on hydrogen production technologies: state-of-the-art review with a focus on green-electrolysis. Applied Sciences. 2021; 11(23): 11363.

Ahmad Kamaroddin, M. F., Sabli, N., Tuan Abdullah, T. A., Siajam, S. I., Abdullah, L. C., Abdul Jalil, A., & Ahmad, A. Membrane-based electrolysis for hydrogen production: A review. Membranes. 2021; 11(11): 810.

Díez, E. G. Reformado de combustibles líquidos con captura de co2 mediante transportadores sólidos de oxígeno (Doctoral dissertation, Universidad de Zaragoza). 2017.

Klug, M. Pirólisis, un proceso para derretir la biomasa. Revista de Química. 2012; 26(1-2): 37-40.

Lopez, G., Santamaria, L., Lemonidou, A., Zhang, S., Wu, C., Sipra, A. T., & Gao, N. Hydrogen generation from biomass by pyrolysis. Nature Reviews Methods Primers. 2022; 2(1): 20.

Domenech, P. Tecnologías de producción de hidrógeno basadas en métodos biológicos (No. 1481). CIEMAT technical reports. 2020.

Drapcho, C. M., Nhuan, N. P., & Walker, T. H. Biofuels engineering process technology (No. Sirsi) i9780071487498). New York: McGraw-Hill. 2008.

Yu, J., & Takahashi, P. Biophotolysis-based hydrogen production by cyanobacteria and green microalgae. Communicating current research and educational topics and trends in applied microbiology. 2007; 1: 79-89.

Ghiasian, M. Biophotolysis-based hydrogen production by cyanobacteria. Prospects of renewable bioprocessing in future energy systems. 2019: 161-184.

Lu, L., & Ren, Z. J. Microbial electrolysis cells for waste biorefinery: A state of the art review. Bioresource technology. 2016; 215: 254-264.

Hua, T., Li, S., Li, F., Zhou, Q., & Ondon, B. S. Microbial electrolysis cell as an emerging versatile technology: a review on its potential application, advance and challenge. Journal of Chemical Technology & Biotechnology. 2019; 94(6): 1697-1711.

Fernández Rodríguez, C., Martínez Torres, E. J., Morán Palao, A., & Gómez Barrios, X. Procesos biológicos para el tratamiento de lactosuero con producción de biogás e hidrógeno. Revisión bibliográfica. Revista Ion. 2016; 29(1): 47-62.

De Vrije, T., & Claassen, P. A. M. Dark hydrogen fermentations. Bio-methane & Bio-hydrogen. 2003; 103-123.

Fang, Z., Smith, R. L., & Qi, X. (Eds.). Production of hydrogen from renewable resources (Vol. 5). Dordrecht: Springer. 2015.

Adams, M. W., Mortenson, L. E., & Chen, J. S. Hydrogenase. Biochimica et Biophysica Acta (BBA)-Reviews on Bioenergetics. 1980; 594(2-3): 105-176.

Thauer, R. K., Jungermann, K., & Decker, K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriological reviews. 1977; 41(1): 100-180.

Álvarez-Delgado, A., Otero-Rambla, M. A., & Faife-Pérez, E. Impacto ambiental de la producción de agro-combustibles. ICIDCA. Sobre los Derivados de la Caña de Azúcar. 2011; 45(2): 19-27.

Wang, J., & Wan, W. Factors influencing fermentative hydrogen production: a review. International journal of hydrogen energy. 2009; 34(2): 799-811.

Agrawal, R., & Sikdar, S. K. Energy, environment and sustainability challenges and opportunities for chemical engineers. Current Opinion in Chemical Engineering. 2012; 3(1): 201-203.

Lin, C. Y., Chang, C. C., & Hung, C. H. (2008). Fermentative hydrogen production from starch using natural mixed cultures. International journal of hydrogen energy, 33(10), 2445-2453.

Sarangi, P. K., & Nanda, S. Biohydrogen production through dark fermentation. Chemical Engineering & Technology. 2020; 43(4): 601-612.

Levin, D. B., Carere, C. R., Cicek, N., & Sparling, R. Challenges for biohydrogen production via direct lignocellulose fermentation. International journal of hydrogen energy. 2009; 34(17): 7390-7403.

Soares, J. F., Confortin, T. C., Todero, I., Mayer, F. D., & Mazutti, M. A. Dark fermentative biohydrogen production from lignocellulosic biomass: technological challenges and future prospects. Renewable and Sustainable Energy Reviews. 2020; 117: 109484.

VanFossen, A. L., Verhaart, M. R., Kengen, S. M., & Kelly, R. M. Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences. Applied and Environmental Microbiology. 2009; 75(24); 7718-7724.

De Vrije, T., Bakker, R. R., Budde, M. A., Lai, M. H., Mars, A. E., & Claassen, P. A. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnology for biofuels. 2009; 2(1): 1-15.

Levin, D. B., Pitt, L., & Love, M. Biohydrogen production: prospects and limitations to practical application. International journal of hydrogen energy. 2004; 29(2): 173-185.

Valente, A., Iribarren, D., & Dufour, J. Prospective carbon footprint comparison of hydrogen options. Science of The Total Environment. 2020; 728: 138212.

Ginkel, S. V., Sung, S., & Lay, J. J. Biohydrogen production as a function of pH and substrate concentration. Environmental science & technology. 2001; 35(24): 4726-4730.

Bielen, A. A., Verhaart, M. R., VanFossen, A. L., Blumer-Schuette, S. E., Stams, A. J., van der Oost, J., ... & Kengen, S. W. A thermophile under pressure: Transcriptional analysis of the response of Caldicellulosiruptor saccharolyticus to different H2 partial pressures. International journal of hydrogen energy. 2013; 38(4): 1837-1849.

Chen, W. H., Chen, S. Y., Khanal, S. K., & Sung, S. Kinetic study of biological hydrogen production by anaerobic fermentation. International Journal of Hydrogen Energy. 2006; 31(15): 2170-2178.

Pérez-Rangel, M., Barboza-Corona, J. E., Buitrón, G., & Valdez-Vazquez, I. Essential nutrients for improving the direct processing of raw lignocellulosic substrates through the dark fermentation process. BioEnergy research. 2020; 13: 349-357.

Wang, J., & Yin, Y. Clostridium species for fermentative hydrogen production: An overview. International Journal of Hydrogen Energy. 2021; 46(70): 34599-34625..

Moussa, R. N., Moussa, N., & Dionisi, D. Hydrogen production from biomass and organic waste using dark fermentation: an analysis of literature data on the effect of operating parameters on process performance. Processes. 2022; 10(1): 156.

D'Silva, T. C., Khan, S. A., Kumar, S., Kumar, D., Isha, A., Deb, S., ... & Semple, K. T. Biohydrogen production through dark fermentation from waste biomass: Current status and future perspectives on biorefinery development. Fuel. 2023; 350: 128842.

Urbaniec, K., & Bakker, R. R. Biomass residues as raw material for dark hydrogen fermentation–A review. International Journal of Hydrogen Energy. 2015; 40(9): 3648-3658.

Panagiotopoulos, I. A., Bakker, R. R., De Vrije, T., Koukios, E. G., & Claassen, P. A. M. Pretreatment of sweet sorghum bagasse for hydrogen production by Caldicellulosiruptor saccharolyticus. International Journal of Hydrogen Energy. 2010; 35(15): 7738-7747.

Pattra, S., Sangyoka, S., Boonmee, M., & Reungsang, A. Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. International journal of hydrogen energy. 2008; 33(19): 5256-5265.

Eriksen, N. T., Riis, M. L., Holm, N. K., & Iversen, N. H2 synthesis from pentoses and biomass in Thermotoga spp. Biotechnology letters. 2011; 33: 293-300.

Lo, Y. C., Lu, W. C., Chen, C. Y., & Chang, J. S. Dark fermentative hydrogen production from enzymatic hydrolysate of xylan and pretreated rice straw by Clostridium butyricum CGS5. Bioresource technology. 2010; 101(15): 5885-5891.

Datar, R., Huang, J., Maness, P. C., Mohagheghi, A., Czernik, S., & Chornet, E. Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. International Journal of Hydrogen Energy. 2007; 32(8): 932-939.

De Vrije, T., Budde, M. A., Lips, S. J., Bakker, R. R., Mars, A. E., & Claassen, P. A. Hydrogen production from carrot pulp by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. International Journal of Hydrogen Energy. 2010; 35(24): 13206-13213.

Levin, D. B., Islam, R., Cicek, N., & Sparling, R. Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. International Journal of Hydrogen Energy. 2006; 31(11): 1496-1503.

Kádár, Z., de Vrije, T., van Noorden, G. E., Budde, M. A., Szengyel, Z., Réczey, K., & Claassen, P. A. Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus. In Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO (pp. 497-508). Humana Press. 2004.

Espinosa Negrín, A. M., López González, L. M., & Casdelo Gutiérrez, N. L. Pretratamiento de Biomasas Lignocelulósicas: Breve Revisión de los Principales Métodos Utilizados. Centro Azúcar. 2021; 48(3): 108-119.

Gorozabel, B. P. L., Reyes, E. R., & Parra, J. C. P. Transformación de Biomasa Lignocelulósica en Biocombustible de Segunda Generación: Estado del Arte del Pretratamiento. Revista Bases de la Ciencia. 2022; 7(ESPECIAL): 3-22.

Hendriks, A. T. W. M., & Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource technology. 2009; 100(1): 10-18.

Wi, S. G., Cho, E. J., Lee, D. S., Lee, S. J., Lee, Y. J., & Bae, H. J. Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials. Biotechnology for biofuels. 2015; 8(1): 1-11.

Mohammad, J. T., & Keikhosro, K. Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: A Review. Bio Resources. 2007; 2(4); 707-738.

Arismendy, A. M., Villa Retrepo, A. F., Alcaraz, W., Chamorro, E. R., & Area, M. C. (Optimización de la hidrólisis enzimática de la cascarilla de arroz. Revista de Ciencia y Tecnología. 2019; (32): 1-10.

Bustos, C. R. B., Morales, D., Cuellar, L., & Jaramillo, S. Hidrólisis enzimática de almidón. Revista de Investigación. 2017; 10(1): 129-140.

Vásquez Flores, D. Producción de hidrógeno mediante fermentación oscura. Revisión sistemática, 2020. 2020.

Castelló, E., Ferraz-Junior, A. D. N., Andreani, C., del Pilar Anzola-Rojas, M., Borzacconi, L., Buitrón, G., ... & Etchebehere, C. Stability problems in the hydrogen production by dark fermentation: possible causes and solutions. Renewable and Sustainable Energy Reviews. 2020; 119: 109602.

Boshagh, F., Rostami, K., & van Niel, E. W. Application of kinetic models in dark fermentative hydrogen production–A critical review. International Journal of Hydrogen Energy. 2022; 47(52): 21952-21968.

Gopalakrishnan, B., Khanna, N., & Das, D. Dark-fermentative biohydrogen production. In Biohydrogen (pp. 79-122). Elsevier. 2019.

Dias, P., Moura, P., & de Carvalho, C. Hydrogen production by Clostridium butyricum: improving production yields and assessing changes in the cell lipid profile during adaptation to furans and gallic acid.

Liu, G., & Shen, J. Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria. Journal of bioscience and bioengineering. 2004; 98(4): 251-256.

Chen, W. M., Tseng, Z. J., Lee, K. S., & Chang, J. S. Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. International journal of hydrogen energy. 2005; 30(10): 1063-1070.

Yokoi, H., Saitsu, A., Uchida, H., Hirose, J. U. N., Hayashi, S., & Takasaki, Y. Microbial hydrogen production from sweet potato starch residue. Journal of bioscience and bioengineering. 2001; 91(1): 58-63.

Ishikawa, M., Yamamura, S., Takamura, Y., Sode, K., Tamiya, E., & Tomiyama, M. Development of a compact high-density microbial hydrogen reactor for portable bio-fuel cell system. International Journal of Hydrogen Energy. 2006; 31(11): 1484-1489.

Bisaillon, A., Turcot, J., & Hallenbeck, P. C. The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. International Journal of Hydrogen Energy. 2006; 31(11): 1504-1508.

Aki, H., Yamamoto, S., Kondoh, J., Maeda, T., Yamaguchi, H., Murata, A., & Ishii, I. Fuel cells and energy networks of electricity, heat, and hydrogen in residential areas. International Journal of Hydrogen Energy. 2006; 31(8): 967-980.

Redwood, M. D., & Macaskie, L. E. A two-stage, two-organism process for biohydrogen from glucose. International Journal of Hydrogen Energy. 2006; 31(11): 1514-1521.

Collet, C., Adler, N., Schwitzguébel, J. P., & Péringer, P. Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose. International Journal of Hydrogen Energy. 2004; 29(14): 1479-1485.

Zhang, Z. P., Show, K. Y., Tay, J. H., Liang, D. T., Lee, D. J., & Jiang, W. J. Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. Process Biochemistry. 2006; 41(10): 2118-2123.

Bedoya, A., Castrillón, J. C., Ramírez, J. E., Vásquez, J. E., & Arias Zabala, M. Producción biológica de hidrógeno: una aproximación al estado del arte. Dyna. 2008; 75(154): 137-157.

Kawagoshi, Y., Hino, N., Fujimoto, A., Nakao, M., Fujita, Y., Sugimura, S., & Furukawa, K. Effect of inoculum conditioning on hydrogen fermentation and pH effect on bacterial community relevant to hydrogen production. Journal of Bioscience and Bioengineering. 2005; 100(5): 524-530.

Cai, M., Liu, J., & Wei, Y. Enhanced biohydrogen production from sewage sludge with alkaline pretreatment. Environmental science & technology. 2004; 38(11): 3195-3202.

Oh, Y. K., Seol, E. H., Kim, J. R., & Park, S. Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. International Journal of Hydrogen Energy. 2003; 28(12): 1353-1359.

Cheong, D. Y., & Hansen, C. L. Acidogenesis characteristics of natural, mixed anaerobes converting carbohydrate-rich synthetic wastewater to hydrogen. Process Biochemistry. 2006; 41(8): 1736-1745.

Zhu, H., & Béland, M. Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge. International Journal of Hydrogen Energy. 2006; 31(14): 1980-1988.

Chen, X., Sun, Y., Xiu, Z., Li, X., & Zhang, D. Stoichiometric analysis of biological hydrogen production by fermentative bacteria. International Journal of Hydrogen Energy. 2006; 31(4): 539-549.

Hussy, I., Hawkes, F. R., Dinsdale, R., & Hawkes, D. L. Continuous fermentative hydrogen production from sucrose and sugarbeet. International Journal of Hydrogen Energy. 2005; 30(5): 471-483.

Asada, Y., Tokumoto, M., Aihara, Y., Oku, M., Ishimi, K., Wakayama, T., ... & Kohno, H. Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV. International Journal of Hydrogen Energy. 2006; 31(11): 1509-1513.

Nakamura, M., Kanbe, H., & Matsumoto, J. I. Fundamental studies on hydrogen production in the acid-forming phase and its bacteria in anaerobic treatment processes–the effects of solids retention time. Water Science and Technology. 1993; 28(7): 81-88.

Cardona-Alzate, C. A. Análisis del ciclo de vida para la producción de hidrógeno como combustible del futuro. Revista Cubana de Química. 2013; 25(2): 165-179.

Drapcho, C. M., Nhuan, N. P., & Walker, T. H. Biofuels engineering process technology (No. Sirsi) i9780071487498). New York: McGraw-Hill. 2008.

Morya, R., Raj, T., Lee, Y., Pandey, A. K., Kumar, D., Singhania, R. R., ... & Kim, S. H. Recent updates in biohydrogen production strategies and life–cycle assessment for sustainable future. Bioresource technology. 2022; 128159.

Hren, R., Vujanović, A., Van Fan, Y., Klemeš, J. J., Krajnc, D., & Čuček, L. Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment. Renewable and Sustainable Energy Reviews. 2023; 173: 113113.

Rojas, J., Zhai, S., Sun, E., Haribal, V., Marin-Quiros, S., Sarkar, A., ... & Majumdar, A. Technoeconomics and carbon footprint of hydrogen production. International Journal of Hydrogen Energy. 2023.

Provo, J., Fava, J., & Baer, S. Life Cycle Assessment and the chemical engineer: a marriage of convenience. Current Opinion in Chemical Engineering. 2013; 2(3): 278-281.

Trainham, J. A., Newman, J., Bonino, C. A., Hoertz, P. G., & Akunuri, N. Whither solar fuels?. Current Opinion in Chemical Engineering. 2012; 1(3): 204-210.

Cadena Martínez, D. L., & Córdoba España, W. A. Propuesta para la obtención de biohidrógeno por fermentación oscura a partir de un residuo agroindustrial (Bachelor's thesis, Fundación Universidad de América). 2022.

Qyyum, M. A., Ihsanullah, I., Ahmad, R., Ismail, S., Khan, A., Nizami, A. S., & Tawfik, A. Biohydrogen production from real industrial wastewater: Potential bioreactors, challenges in commercialization and future directions. International Journal of Hydrogen Energy. 2022; 47(88): 37154-37170.

Luo, Y., Lee, J. K., & Zhao, H. Challenges and opportunities in synthetic biology for chemical engineers. Chemical engineering science. 2013; 103: 115-119.

Descargas

Publicado

2023-11-17

Cómo citar

Castiblanco, O., & Guerrero, D. (2023). PRODUCCIÓN DE HIDRÓGENO A PARTIR DE BIOMASA POR MEDIO DE FERMENTACIÓN OSCURA: UNA REVISIÓN. Perfiles, 1(30), 32-46. https://doi.org/10.47187/perf.v1i30.237