ESQUEMAS IBOMAS Y CRESSMAN PARA SERIES TEMPORALES DE TEMPERATURA EN LA PROVINCIA DE CHIMBORAZO
DOI:
https://doi.org/10.47187/perf.v1i32.290Palabras clave:
Datos meteorológicos, Datos climáticos, Estimación de datos faltantes, Método de Cressman, Esquema de Análisis de Mapas Objetivo Interactivo de Barnes, Radio de influenciaResumen
Un problema común con los datos meteorológicos y climáticos es la pérdida de información debido a factores ambientales y técnicos. El objetivo de este estudio fue completar los datos observados de la estación meteorológica de Alao, perteneciente a la Escuela Superior Politécnica de Chimborazo (ESPOCH), durante el año 2021. Se utilizó el esquema de análisis de mapas objetivo interactivo de Barnes y el método de Cressman para estimar los datos faltantes en la serie temporal de la variable de temperatura, que funcionan según el peso con radios de influencia de 10, 30 y 60. Se obtuvo una precisión óptima del 99% en la segunda iteración del esquema de análisis de mapas objetivo interactivo de Barnes con el radio más pequeño.La precisión de los datos estimados por el análisis de mapas objetivo de Barnes depende del número de pasos hasta alcanzar valores más cercanos o iguales a los datos observados, mientras que con Cressman se obtuvo un 92%. Los resultados indican la dependencia del radio de influencia en el método de Cressman.
Descargas
Citas
Builes-Jaramillo A, Yepes J, Salas HD. The Orinoco Low-Level Jet and Its Association with the Hydroclimatology of Northern South America. J Hydrometeorol [Internet]. 2022 [cited July 23, 2023]; 23(2): 209–23. Available from: https://journals.ametsoc.org/view/journals/hydr/23/2/JHM-D-21-0073.1.xml
Asmerom Y, Baldini JUL, Prufer KM, Polyak VJ, Ridley HE, Aquino V V., et al. Intertropical convergence zone variability in the Neotropics during the Common Era. Sci Adv [Internet]. 2020 [cited July 23, 2023]; 6(7). Available from: https://www.science.org/doi/10.1126/sciadv.aax3644
Acevedo OC, Degrazia GOA, Puhales FS, Martins LGN, Oliveira PES, Teichrieb CAO, et al. Monitoring the Micrometeorology of a Coastal Site next to a Thermal Power Plant from the Surface to 140 m. Bull Am Meteorol Soc [Internet]. 2018 [cited July 23, 2023]; 99(4): 725–38. Available from: https://journals.ametsoc.org/view/journals/bams/99/4/bams-d-17-0134.1.xml
Valencia-González JN, Arteaga-Ramírez R, Vásquez-Peña MA, Quevedo-Nolasco A, et al. Relleno de datos diarios faltantes en registros de series climatológicas temporales. Rev Mex De Cienc Agric [Internet]. 2022 [cited July 23, 2023]; 13(4): 617–29. Available from: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342022000400617&lng=es&nrm=iso&tlng=es
Maine R, Gauntlett DJ. Modifications to an Operational Numerical Weather Analysis System and Application to Rainfall. Journal of Applied Meteorology and Climatology. 1968; 7(1): 18–28.
Cressman G. An Operational Objective Analysis System. Monthly Weather Review. 1959; 87(10): 367–74.
Tronci N, Molteni F, Bozzini M. Ein Vergleich lokaler Näherungsverfahren zur Analyse meteorologischer Daten. Arch Met Geoph Biocl, Ser B [Internet]. 1986 [cited June 17, 2023]; 36(2): 189–211. Available from: http://dx.doi.org/10.1007/bf02278328
Benjamin SO, Seaman NL. A simple scheme for objective analysis in curved flow. Mon Weather Rev [Internet]. 1985 [cited June 17, 2024]; 113(7): 1184–98. Available from: https://journals.ametsoc.org/view/journals/mwre/113/7/1520-0493_1985_113_1184_assfoa_2_0_co_2.xml?rskey=AxWsyJ&result=14
Trapp RJ, Doswell CA III. Radar data objective analysis. J Atmos Ocean Technol [Internet]. 2000 [cited June 17, 2024]; 17(2): 105–20. Available from: https://journals.ametsoc.org/view/journals/atot/17/2/1520-0426_2000_017_0105_rdoa_2_0_co_2.xml
Ramanathan Y, Sikka DR. Fourier expansion techniques in objective analysis. Mausam [Internet]. 1972 [cited June 17, 2023]; 23(2): 145–152. Available from: http://dx.doi.org/10.54302/mausam.v23i2.5269
Barnes SL. Mesoscale objective map analysis using weighted time-series observations [Internet]. 1973 [cited July 23, 2023]. Available from: https://repository.library.noaa.gov/view/noaa/17647
Barnes SL. A Technique for Maximizing Details in Numerical Weather Map Analysis. Journal of Applied Meteorology. 1964; 3(4): 396–409.
Zürcher BK. Fast Barnes Interpolation. Geoscientific Model Development Discussions [Internet]. 2022 [cited May 1, 2023]; 2022: 1-25. Available from: https://doi.org/10.5194/gmd-2022-116
Maglione D, Soto J, Sáenz JL, Bonfili O. Utilización de diferentes metodologías para la construcción de un mapa de precipitación acumulada en la Provincia de Santa Cruz. Informes Científicos Técnicos – UNPA [Internet]. 2019 [cited May 1, 2023]; 11(1): 154–169. Available from: https://dialnet.unirioja.es/servlet/articulo?codigo=7342657
Koch S, desJardins M, Kocin PJ. An Interactive Barnes Objective Map Analysis Scheme for Use with Satellite and Conventional Data. American Meteorological Society. 1983; 22(9): 1487–503.
Barnes SL. A Technique for Maximizing Details in Numerical Weather Map Analysis. AMETSOC [Internet]. 1964 [cited August 1, 2023]; Available from: https://doi.org/10.1175/1520-0450(1964)003
Amine L, Mirzaee E, Khakiyan G. Objective analysis through Barnes scheme. Nivar [Internet]. 2013 [cited August 1, 2023]; 37(83–82): 3–12. Available from: https://nivar.irimo.ir/article_13171_en.html
Sinha SK, Narkhedkar SG. Barnes objective analysis scheme of daily rainfall over Maharashtra (India) on a mesoscale grid [Internet]. Org.mx. 2006 [cited June 17, 2024]; 19(2): 109-126. Available from: https://www.scielo.org.mx/pdf/atm/v19n2/v19n2a03.pdf
Xia Y, Winterhalter M, Fabian P. A model to interpolate monthly mean climatological data at Bavarian forest climate stations. Theor Appl Climatol [Internet]. 1999 [cited June 17, 2023]; 64(1–2): 27–38. Available from: http://dx.doi.org/10.1007/s007040050108
Cruz-Roa AF, Barrios MI. Estimación de datos faltantes de lluvia mensual a través de la asimilación de información satelital y pluviométrica en una cuenca andina tropical. Idesia (Arica) [Internet]. 2018 [cited July 11, 2023]; 36(3): 107-117. Available from: http://dx.doi.org/10.4067/S0718-34292018005001601
Glahn B, Im J-S, Wagner G. 8.4 Objective Analysis of Mos Forecasts and Observations in Sparse Data Regions. Weather [Internet]. 2012 [cited June 18, 2024]. Available from: https://www.weather.gov/media/mdl/pub/Glahn_2012_ObjectiveAnalysisPreprint.pdf
Achtemeier GL. On the concept of varying influence radii for a successive corrections objective analysis. Mon Weather Rev [Internet]. 1987 [cited June 18, 2023]; 115(8): 1760–72. Available from: http://dx.doi.org/10.1175/1520-0493(1987)115<1760>2.0.co;2
Stephens JJ, Stitt JM. Optimum influence radii for interpolation with the method of successive corrections1. Mon Weather Rev [Internet]. 1970 [cited September 18, 2023]; 98(9): 680–7. Available from: http://dx.doi.org/10.1175/1520-0493(1970)098<0680>2.3.co;2
Bratseth AM. Statistical interpolation by means of successive corrections. Tellus A [Internet]. 1986 [cited January 23, 2024]; 38(5): 439. Available from: http://dx.doi.org/10.3402/tellusa.v38i5.11730
Pedder MA. Interpolation and filtering of spatial observations using successive corrections and Gaussian filters. Mon Weather Rev [Internet]. 1993 [cited April 18, 2023]; 121(10): 2889–902. Available from: http://dx.doi.org/10.1175/1520-0493(1993)121<2889>2.0.co;2
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.