PREDICCIÓN DEL SECADO DE ZANAHORIA EN LECHO FLUIDO MEDIANTE UN GEMELO DIGITAL BASADO EN ECUACIONES FENOMENOLÓGICAS
DOI:
https://doi.org/10.47187/perf.v1i35.366Palabras clave:
Gemelo digital, secado en lecho fluido, Aspen HYSYS® v14, zanahoriaResumen
Desarrollo e implementación de un gemelo digital para simular y predecir el proceso de secado de hojuelas de zanahoria en un lecho fluido (FBD), integrando ecuaciones termodinámicas con técnicas de simulación digital. Se recolectaron datos experimentales y operativos para validar el comportamiento del secador en condiciones reales, comparándolos con los resultados del modelo simulado. El gemelo digital permitió identificar puntos críticos, optimizar parámetros operativos, mejorar la eficiencia del proceso y proporcionar un modelo para predecir su comportamiento. Los resultados mostraron un cambio en la humedad final de 10% al 7% con la implementación del gemelo digital. Además, valiéndonos de los resultados en el simulador se realizó un análisis estadístico de varianza (ANOVA) que indica un modelo estadístico polinómico de primer orden con un coeficiente de determinación . Estos resultados demuestran que los gemelos digitales son una herramienta eficaz para optimizar procesos industriales, alineándose con los avances de la automatización industrial, contribuyendo a la mejora continua en la calidad del producto y la sostenibilidad energética.
Descargas
Citas
Singh M, Srivastava R, Fuenmayor E, Kuts V, Qiao Y, Murray N, et al. Applications of digital twin across industries: a review. Appl Sci (Basel). 2022;12:5727. https://doi.org/10.3390/app12115727
Melesse TY, Franciosi C, Di Pasquale V, Riemma S. Analyzing the implementation of digital twins in the agri-food supply chain. Logistics. 2023;7:33. https://doi.org/10.3390/logistics7020033
Onwude DI, Bahrami F, Shrivastava C, Berry T, Cronje P, North J, et al. Physics-driven digital twins to quantify the impact of pre- and postharvest variability on the end quality evolution of orange fruit. Resour Conserv Recycl. 2022;186:106585. https://doi.org/10.1016/j.resconrec.2022.106585
Kang HJ, Yu HH, Cho CW, Rhee YK, Kim TW, Chin YW. Optimization of medium composition and fluidized bed drying conditions for efficient production of dry yeast. Microorganisms. 2024;13:22. https://doi.org/10.e3390/microorganisms13010022
Verboven P, Defraeye T, Datta AK, Nicolai B. Digital twins of food process operations: the next step for food process models? Curr Opin Food Sci. 2020;35:79–87. https://doi.org/10.1016/j.cofs.2020.03.002
Bürger JV, Jaskulski M, Kharaghani A. Modeling of maltodextrin drying kinetics for use in simulations of spray drying. Dry Technol. 2025;43. https://doi.org/10.1080/07373937.2024.2421451
Udugama IA, Kelton W, Bayer C. Digital twins in food processing: a conceptual approach to developing multi-layer digital models. Digit Chem Eng. 2023;7:100087. https://doi.org/10.1016/j.dche.2023.100087
Barraza Rodolfo B, Chang Pedro Rodrigo O, Yvan Jesus G-L. Digital Twins Application in The Post-Harvest Supply Chain of Fruits and Vegetables: A Systematic Review of The Literature. 2022.
Motegaonkar S, Shankar A, Tazeen H, Gunjal M, Payyanad S. A comprehensive review on carrot (Daucus carota L.): the effect of different drying methods on nutritional properties and its processing as value-added foods. Food Biosci. 2024;1:11. https://doi.org/10.1039/d3fb00162h
Henrichs E, Noack T, Piedrahita AMP, Salem MA, Stolz J, Krupitzer C. Can a byte improve our bite? An analysis of digital twins in the food industry. Sensors. 2022;22:115. https://doi.org/10.3390/s22010115
Nicolle C, Simon G, Rock E, Amouroux P, Rémésy C. Genetic variability influences carotenoid, vitamin, phenolic, and mineral content in white, yellow, purple, orange, and dark-orange carrot cultivars. 2004;129.
Chen Q, Hu J, Yang H, Wang D, Liu H, Wang X, et al. Experiment and simulation of the pneumatic classification and drying of coking coal in a fluidized bed dryer. Chem Eng Sci. 2020;214:115364. https://doi.org/10.1016/j.ces.2019.115364
Ge R, Ye J, Wang H, Yang W. Investigation of gas–solids flow characteristics in a conical fluidized bed dryer by pressure fluctuation and electrical capacitance tomography. Dry Technol. 2016;34:13. https://doi.org/10.1080/07373937.2015.1116083
Méndez-Lagunas LL, Rodríguez-Ramírez J, Sandoval-Torres S, Barragán-Iglesias J, López-Ortíz A. Strawberry fluidized bed drying: antiadhesion pretreatments and their effect on bioactive compounds. Appl Food Res. 2025;5:100739. https://doi.org/10.1016/j.afres.2025.100739
Askarishahi M, Salehi MS, Radl S. Challenges in the simulation of drying in fluid bed granulation. Processes. 2023;11:569. https://doi.org/10.3390/pr11020569
Amer BMA, Azam MM, Saad AG. Monitoring temperature profile and drying kinetics of thin-layer banana slices under controlled forced convection conditions. Processes. 2023;11:1771. https://doi.org/10.3390/pr11061771
Billah MT, Zannat NE, Hossain MA, Sachcha IH, Yasmin S, Sarker MSH. Process optimization of fluidized bed drying for water spinach: evaluating the effect of blanching through RSM and ANN models. Food Sci Nutr. 2025;13:70114. https://doi.org/10.1002/fsn3.70114
Doymaz I. Infrared drying kinetics and quality characteristics of carrot slices. J Food Process Preserv. 2015;39:4–5. https://doi.org/10.1111/jfpp.12524
Nazghelichi T, Kianmehr MH, Aghbashlo M. Thermodynamic analysis of fluidized bed drying of carrot cubes. Energy. 2010;35:4. https://doi.org/10.1016/j.energy.2010.09.036
Arslan D, Özcan MM. Dehydration of red bell-pepper (Capsicum annuum L.): change in drying behavior, colour and antioxidant content. Food Bioprod Process. 2011;89:7–8. https://doi.org/10.1016/j.fbp.2010.09.009
Amira T, Souhir G, Ahmed T. Mathematical modeling of batch fluidized bed drying of alumina. Am J Mech Appl. 2025;12:10. https://doi.org/10.11648/j.ajma.20251201.12
Gagnon F, Bouchard J, Desbiens A, Poulin É, Lapointe-Garant PP. A dynamic simulation model of a continuous horizontal fluidized bed dryer. Chem Eng Sci. 2021;233:116258. https://doi.org/10.1016/j.ces.2020.116258
Elyas R. Dynamic simulation for process control with Aspen HYSYS. In: Aspentech, editor. Chemical Engineering Process Simulation. 2nd ed. Amsterdam: Elsevier; 2022. p. 20–26. https://doi.org/10.1016/B978-0-323-90168-0.00015-9
Schwarz CE. Effect of variation between different experimental VLE data sets on thermodynamic model and separation predictions: NRTL correlation of the ethanol + water system. Ind Eng Chem Res. 2024;63:6–11. https://doi.org/10.1021/acs.iecr.4c00484
Qi Q, Tao F. Digital twin and big data towards smart manufacturing and Industry 4.0: 360 degree comparison. IEEE Access. 2018;6:5–6. https://doi.org/10.1109/ACCESS.2018.2793265
Descargas
Publicado
Cómo citar
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.













