Prediction of carrot drying in fluidized bed using digital twin based on phenomenological equations

Authors

  • Alejandro Javier Delgado Araujo Universidad de la Frontera, Doctorado en Ingeniería, Temuco, Chile
  • Fausto Andrés Reyes Estévez Universidad Central del Ecuador, Facultad de Ingeniería Química, Departamento de Operaciones Unitarias, Quito, Ecuador
  • Carlos Alberto Almeida Universidad Central del Ecuador, Facultad de Ingeniería Química, Departamento de Operaciones Unitarias, Quito, Ecuador
  • William Ricardo Venegas Toro Escuela Politécnica Nacional, Departamento de Ingeniería Mecánica, Quito, Ecuador
  • Alejandro Daniel Hidalgo Chafuel Universidad Central del Ecuador, Facultad de Ingeniería Química, Departamento de Operaciones Unitarias, Quito, Ecuador
  • Edison Fernando García Narváez Universidad Central del Ecuador, Facultad de Ingeniería Química, Departamento de Operaciones Unitarias, Quito, Ecuador
  • Gilda Graciela Gordillo Vinueza Universidad Politécnica Salesiana, Grupo GILEC, Quito, Ecuador
  • Jorge Alfonso López Lara Empresa Pública de Hidrocarburos del Ecuador – EP PETROECUADOR, Quito, Ecuador
  • Jorge Luis Santamaria Carrera Universidad Central del Ecuador, Facultad de Ingeniería Química, Departamento de Operaciones Unitarias, Quito, Ecuador

DOI:

https://doi.org/10.47187/perf.v1i35.366

Keywords:

Digital twin, fluid bed drying, Aspen HYSYS® v14, carrot

Abstract

Development and implementation of a digital twin to simulate and predict the fluidized bed drying (FBD) process of carrot flakes, integrating thermodynamic equations with digital simulation techniques. Experimental and operational data were collected to validate the dryer's behavior under real-life conditions, comparing them with the results of the simulated model. The digital twin allowed critical points to be identified, operating parameters to be optimized, process efficiency to be improved, and a model to predict its behavior was provided. The results showed a change in final moisture content from 10% to 7% with the implementation of the digital twin. In addition, using the simulator results, a statistical analysis of variance (ANOVA) was carried out, indicating a first-order polynomial statistical model with a coefficient of determination   99.88. These results demonstrate that digital twins are an effective tool for optimizing industrial processes, aligning with advances in industrial automation, contributing to continuous improvement in product quality and energy sustainability.

Downloads

Download data is not yet available.

References

Singh M, Srivastava R, Fuenmayor E, Kuts V, Qiao Y, Murray N, et al. Applications of digital twin across industries: a review. Appl Sci (Basel). 2022;12:5727. https://doi.org/10.3390/app12115727

Melesse TY, Franciosi C, Di Pasquale V, Riemma S. Analyzing the implementation of digital twins in the agri-food supply chain. Logistics. 2023;7:33. https://doi.org/10.3390/logistics7020033

Onwude DI, Bahrami F, Shrivastava C, Berry T, Cronje P, North J, et al. Physics-driven digital twins to quantify the impact of pre- and postharvest variability on the end quality evolution of orange fruit. Resour Conserv Recycl. 2022;186:106585. https://doi.org/10.1016/j.resconrec.2022.106585

Kang HJ, Yu HH, Cho CW, Rhee YK, Kim TW, Chin YW. Optimization of medium composition and fluidized bed drying conditions for efficient production of dry yeast. Microorganisms. 2024;13:22. https://doi.org/10.e3390/microorganisms13010022

Verboven P, Defraeye T, Datta AK, Nicolai B. Digital twins of food process operations: the next step for food process models? Curr Opin Food Sci. 2020;35:79–87. https://doi.org/10.1016/j.cofs.2020.03.002

Bürger JV, Jaskulski M, Kharaghani A. Modeling of maltodextrin drying kinetics for use in simulations of spray drying. Dry Technol. 2025;43. https://doi.org/10.1080/07373937.2024.2421451

Udugama IA, Kelton W, Bayer C. Digital twins in food processing: a conceptual approach to developing multi-layer digital models. Digit Chem Eng. 2023;7:100087. https://doi.org/10.1016/j.dche.2023.100087

Barraza Rodolfo B, Chang Pedro Rodrigo O, Yvan Jesus G-L. Digital Twins Application in The Post-Harvest Supply Chain of Fruits and Vegetables: A Systematic Review of The Literature. 2022.

Motegaonkar S, Shankar A, Tazeen H, Gunjal M, Payyanad S. A comprehensive review on carrot (Daucus carota L.): the effect of different drying methods on nutritional properties and its processing as value-added foods. Food Biosci. 2024;1:11. https://doi.org/10.1039/d3fb00162h

Henrichs E, Noack T, Piedrahita AMP, Salem MA, Stolz J, Krupitzer C. Can a byte improve our bite? An analysis of digital twins in the food industry. Sensors. 2022;22:115. https://doi.org/10.3390/s22010115

Nicolle C, Simon G, Rock E, Amouroux P, Rémésy C. Genetic variability influences carotenoid, vitamin, phenolic, and mineral content in white, yellow, purple, orange, and dark-orange carrot cultivars. 2004;129.

Chen Q, Hu J, Yang H, Wang D, Liu H, Wang X, et al. Experiment and simulation of the pneumatic classification and drying of coking coal in a fluidized bed dryer. Chem Eng Sci. 2020;214:115364. https://doi.org/10.1016/j.ces.2019.115364

Ge R, Ye J, Wang H, Yang W. Investigation of gas–solids flow characteristics in a conical fluidized bed dryer by pressure fluctuation and electrical capacitance tomography. Dry Technol. 2016;34:13. https://doi.org/10.1080/07373937.2015.1116083

Méndez-Lagunas LL, Rodríguez-Ramírez J, Sandoval-Torres S, Barragán-Iglesias J, López-Ortíz A. Strawberry fluidized bed drying: antiadhesion pretreatments and their effect on bioactive compounds. Appl Food Res. 2025;5:100739. https://doi.org/10.1016/j.afres.2025.100739

Askarishahi M, Salehi MS, Radl S. Challenges in the simulation of drying in fluid bed granulation. Processes. 2023;11:569. https://doi.org/10.3390/pr11020569

Amer BMA, Azam MM, Saad AG. Monitoring temperature profile and drying kinetics of thin-layer banana slices under controlled forced convection conditions. Processes. 2023;11:1771. https://doi.org/10.3390/pr11061771

Billah MT, Zannat NE, Hossain MA, Sachcha IH, Yasmin S, Sarker MSH. Process optimization of fluidized bed drying for water spinach: evaluating the effect of blanching through RSM and ANN models. Food Sci Nutr. 2025;13:70114. https://doi.org/10.1002/fsn3.70114

Doymaz I. Infrared drying kinetics and quality characteristics of carrot slices. J Food Process Preserv. 2015;39:4–5. https://doi.org/10.1111/jfpp.12524

Nazghelichi T, Kianmehr MH, Aghbashlo M. Thermodynamic analysis of fluidized bed drying of carrot cubes. Energy. 2010;35:4. https://doi.org/10.1016/j.energy.2010.09.036

Arslan D, Özcan MM. Dehydration of red bell-pepper (Capsicum annuum L.): change in drying behavior, colour and antioxidant content. Food Bioprod Process. 2011;89:7–8. https://doi.org/10.1016/j.fbp.2010.09.009

Amira T, Souhir G, Ahmed T. Mathematical modeling of batch fluidized bed drying of alumina. Am J Mech Appl. 2025;12:10. https://doi.org/10.11648/j.ajma.20251201.12

Gagnon F, Bouchard J, Desbiens A, Poulin É, Lapointe-Garant PP. A dynamic simulation model of a continuous horizontal fluidized bed dryer. Chem Eng Sci. 2021;233:116258. https://doi.org/10.1016/j.ces.2020.116258

Elyas R. Dynamic simulation for process control with Aspen HYSYS. In: Aspentech, editor. Chemical Engineering Process Simulation. 2nd ed. Amsterdam: Elsevier; 2022. p. 20–26. https://doi.org/10.1016/B978-0-323-90168-0.00015-9

Schwarz CE. Effect of variation between different experimental VLE data sets on thermodynamic model and separation predictions: NRTL correlation of the ethanol + water system. Ind Eng Chem Res. 2024;63:6–11. https://doi.org/10.1021/acs.iecr.4c00484

Qi Q, Tao F. Digital twin and big data towards smart manufacturing and Industry 4.0: 360 degree comparison. IEEE Access. 2018;6:5–6. https://doi.org/10.1109/ACCESS.2018.2793265

Published

2025-12-12

How to Cite

Delgado Araujo, A. J. ., Reyes Estévez, F. A. ., Almeida, C. A., Venegas Toro, W. R., Hidalgo Chafuel, A. D., García Narváez, E. F. ., Gordillo Vinueza, G. G., López Lara, J. A. ., & Santamaria Carrera, J. L. (2025). Prediction of carrot drying in fluidized bed using digital twin based on phenomenological equations. Perfiles, 1(35), 19-29. https://doi.org/10.47187/perf.v1i35.366