INFLUENCIA DEL TAMAÑO DE PARTÍCULA EN EL RENDIMIENTO DE LA HIDRÓLISIS ALCALINA DEL POLIETILENTEREFTALATO (PET) POST- CONSUMO

Autores/as

  • Paul Palmay Escuela Superior Politécnica de Chimborazo, Facultad de Ciencias, Riobamba,Ecuador.
  • Mishell Sánchez Escuela Superior Politécnica de Chimborazo, Facultad de Ciencias, Riobamba,Ecuador.
  • Michele Alvarado Escuela Superior Politécnica de Chimborazo, Facultad de Ciencias, Riobamba,Ecuador.

DOI:

https://doi.org/10.47187/perf.v1i29.196

Palabras clave:

Hidrólisis, álcali, plástico, color, tamaño

Resumen

La generación de plástico a nivel mundial se ha incrementado a un ritmo descontrolado, donde el termoplástico que más aparece es el polietilentereftalato PET, debido a su uso en la industria alimenticia. En la actualidad, se manejan varias tecnologías para su adecuada disposición final. En los últimos años se ha fortalecido las tecnologías de reciclaje químico para obtener productos de interés industrial a partir de un residuo. En este sentido la hidrólisis es una técnica que busca la descomposición del PET, mediante un conjunto de reacciones químicas considerando factores como: tamaño de partícula del PET, catalizador, condiciones de reacción, composición del PET y demás. Para el estudio se utilizó dos dimensiones del plástico: 5mm x 5mm (T5mm) y 10mm x 10mm (T10mm), de plásticos de colores verde y violeta. El material obtenido se caracterizó por medio de espectroscopia infrarroja (FTIR) y prueba de solubilidad, corroborando la presencia de ácido tereftálico (TPA). El mejor resultado se obtuvo con la partícula “T5mm, verde”, con un rendimiento de 96,346%. Por lo tanto, mientras más pequeño sea el tamaño de la partícula, mayor será la probabilidad de que exista una interacción química entre la superficie de las partículas PET y la solución base.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aryan V, Maga D, Majgaonkar P, Hanich R. Valorisation of polylactic acid (PLA) waste: A comparative life cycle assessment of various solvent-based chemical recycling technologies. Resour Conserv Recycl [Internet]. 2021;172:105670. Available from: 10.1016/j.resconrec.2021.105670

Chaudhari US, Lin Y, Thompson VS, Handler RM, Pearce JM, Caneba G, et al. Systems Analysis Approach to Polyethylene Terephthalate and Olefin Plastics Supply Chains in the Circular Economy: A Review of Data Sets and Models. ACS Sustainable Chemistry and Engineering [Internet]. 2021;9(22):7403–21. Available from: https://doi.org/10.1021/acssuschemeng.0c08622

Davidson MG, Furlong RA, McManus MC. Developments in the life cycle assessment of chemical recycling of plastic waste – A review. J Clean Prod [Internet]. 2021;293:126163. Available from: 10.1016/j.jclepro.2021.126163

Steensgaard I, Syberg K, Rist S, Hartmann N, Boldrin A, Hansen SF. From macro- to microplastics - Analysis of EU regulation along the life cycle of plastic bags. Environ Pollut [Internet]. 2017 May 1 [cited 2021 Sep 6];224:289–99. Available from: 10.1016/J.ENVPOL.2017.02.007

Xanthos D, Walker TR. International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): A review. Mar Pollut Bull [Internet]. 2017 May 15 [cited 2021 Sep 6];118(1–2):17–26. Available from: 10.1016/J.MARPOLBUL.2017.02.048

Frigione M. Recycling of PET bottles as fine aggregate in concrete. Waste Manag [Internet]. 2010;30(6):1101–6. Available from: 10.1016/j.wasman.2010.01.030

Langer E, Bortel K, Waskiewicz S, Lenartowicz-Klik M. Methods of PET Recycling [Internet]. Plasticizers Derived from Post-Consumer PET. 2020. 127–171 p. Available from: 10.1016/b978-0-323-46200-6.00005-2

Rezazadeh A, Thomsen K, Gavala HN, Skiadas I V., Fosbøl PL. Solubility and Freezing Points of Disodium Terephthalate in Water-Ethylene Glycol Mixtures. J Chem Eng Data [Internet]. 2021;66(5):2143–52. Available from: 10.1021/acs.jced.1c00052

Tessnow-von Wysocki I, Le Billon P. Plastics at sea: Treaty design for a global solution to marine plastic pollution. Environ Sci Policy [Internet]. 2019;100(February):94–104. Available from: 10.1016/j.envsci.2019.06.005

Chirayil C, Mishra R, Thomas S. Materials Recovery, Direct Reuse and Incineration of PET Bottles. In: Thomas S, Vasudeo Rane A, Kanny K, VK A, Thomas MG, editors. Recycling of Polyethylene Terephthalate Bottles. Andrew,Wil. Kalara: Elsevier Inc.; 2018. p. 37–60.

Kawai K, Tasaki T. Revisiting estimates of municipal solid waste generation per capita and their reliability. J Mater Cycles Waste Manag 2015 181 [Internet]. 2015 Feb 5 [cited 2021 Sep 6];18(1):1–13. Available from: 10.1007/S10163-015-0355-1

Sardon H, Dove AP. Plastics recycling with a difference. Science (80- ) [Internet]. 2018;360(6387):380–1. Available from: 10.1126/science.aat4997

Chinchillas-Chinchillas MJ, Gaxiola A, Alvarado-Beltrán CG, Orozco-Carmona VM, Pellegrini-Cervantes MJ, Rodríguez-Rodríguez M, et al. A new application of recycled-PET/PAN composite nanofibers to cement–based materials. J Clean Prod [Internet]. 2020;252. Available from: 10.1016/j.jclepro.2019.119827

Ragaert K, Delva L, Van Geem K. Mechanical and chemical recycling of solid plastic waste. Waste Manag [Internet]. 2017;69:24–58. Available from: 10.1016/j.wasman.2017.07.044

Li S, Cañete I, Järvinen M, Seemann M. Polyethylene terephthalate (PET) recycling via steam gasification – The effect of operating conditions on gas and tar composition. Waste Manag [Internet]. 2021;130:117–26. Available from: 10.1016/j.wasman.2021.05.023

Yoshioka T, Masaki Ota, Okuwaki A. Conversion of a Used Poly(ethylene terephthalate) Bottle into Oxalic Acid and Terephthalic Acid by Oxygen Oxidation in Alkaline Solutions at Elevated Temperatures. Ind Eng Chem Res [Internet]. 2003 Feb 19 [cited 2021 Sep 7];42(4):675–9. Available from: 10.1021/IE010563Z

Bhogle C, Pandit A. Ultrasound-Assisted Alkaline Hydrolysis of Waste Poly(Ethylene Terephthalate) in Aqueous and Non-aqueous Media at Low Temperature. Indian Chem Eng [Internet]. 2018;60(2):122–40. Available from: 10.1080/00194506.2017.1310634

Damayanti, Wu HS. Strategic possibility routes of recycled pet. Polymers (Basel) [Internet]. 2021;13(9):1–37. Available from: 10.3390/polym13091475

Ügdüler S, Van Geem KM, Denolf R, Roosen M, Mys N, Ragaert K, et al. Towards closed-loop recycling of multilayer and coloured PET plastic waste by alkaline hydrolysis. Green Chem [Internet]. 2020;22(16):5376–94. Available from: 10.1039/d0gc00894j

Canevarolo S V. Experiments in Polymer Science. Polym Sci [Internet]. 2019;281–336. Available from: 10.3139/9781569907269.010

Alaerts L, Augustinus M, Van Acker K. Impact of bio-based plastics on current recycling of plastics. Sustain [Internet]. 2018;10(5). Available from: 10.3390/su10051487

Kandasamy S, Subramaniyan A, Ramasamy G, Ahamed AR, Manickam N, Dhandapani B. Study of alkaline hydrolysis of post consumed polyethylene terephthalate waste. AIP Conf Proc [Internet]. 2020;2240(May). Available from: 10.1063/5.0011020

Căta A, Ştefănuţ MN, Ienaşcu IMC, Tănasie C, Miclău M. Alkaline Hydrolysis of Polyethylene Terephthalate Under Microwave Irradiation. Rev Roum Chim [Internet]. 2017;62(7):531–8.

Braun D. Simple Methods for the Identification of Plastics [Internet]. 5th ed. München: Hanser Publications; 2013. Available from: https://doi.org/10.3139/9781569905425.fm

Lamarque A, Zygadlo J, Labuckas D, López L, Torre M, Maestri D. Fundamentos Teórico-Prácticos de Química Orgánica [Internet]. 1st ed. Lamarque, A Maestri D, editor. Córdoba: Editorial Encuentro; 2008. 94 p.

Jung MR, Horgen FD, Orski S V., Rodriguez C. V, Beers KL, Balazs GH, et al. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar Pollut Bull [Internet]. 2018;127(December 2017):704–16. Available from: 10.1016/j.marpolbul.2017.12.061

Silva E, Fedel M, Deflorian F, Cotting F, Lins V. Properties of post-consumer polyethylene terephthalate coating mechanically deposited on mild steels. Coatings [Internet]. 2019;9(1). Available from: 10.3390/coatings9010028

Dos Santos A, Da Silva M, Lima É, Dos Santo P, Tommasini F. Processing and characterization of PET composites reinforced with geopolymer concrete waste. Mater Res [Internet]. 2017;20:411–20. Available from: 10.1590/1980-5373-MR-2017-0734

Gražėnaitė E. Inorganic green pigments : investigation of historical and synthesis of novel [Internet]. Vilna; 2018.

Chirayil T, Rediske J. Impact of pigments on the dimensional stability of plastics [Internet]. Annual Technical Conference - ANTEC, Conference Proceedings. 2016.

Zhao Z, Fan J, Xie M, Wang Z. Photo-catalytic reduction of carbon dioxide with in-situ synthesized CoPc/TiO2 under visible light irradiation. J Clean Prod [Internet]. 2009;17(11):1025–9. Available from: 10.1016/j.jclepro.2009.02.016

Speight JG. Industrial Inorganic Chemistry [Internet]. Speight JG, editor. Environmental Inorganic Chemistry for Engineers. Butterworth-Heinemann; 2017. 111–169 p. Available from: 10.1016/b978-0-12-849891-0.00003-5

Harris R. A Primer on Colorful Additives. In: Harris R, editor. Coloring Technology for Plastics [Internet]. 1st ed. Georgia; 1999. p. 1–12. Available from: 10.1016/b978-188420778-5.50002-4

Yuyama K, Sugiyama T, Asahi T, Ryo S, Oh I, Masuhara H. Nanoparticle preparation of quinacridone and β-carotene using near-infrared laser ablation of their crystals. Appl Phys A Mater Sci Process [Internet]. 2010;101(4):591–6. Available from: 10.1007/s00339-010-5922-7

Imura, Y Yamashita, y Senju, T Mizuguchi J. Crystal Structure of a Quinacridone Pigment-precursor and its Regeneration Process. Revista de la Sociedad de imágenes de Japón [Internet]. 2005 Apr;138–42. Available from: https://doi.org/10.11370/isj.44.138

Gonz R, Guti I. A shrinking core model for the alkaline hydrolysis of PET assisted by tributylhexadecylphosphonium bromide. 2009;146:287–94.

Dos Santos C, Gonçalves A, Cintra A, Da Silva L, Rossi A, Oliveira H, et al. Processo de reciclagem química de PET em meio alcalino: efeito da concentração do íon hidróxido, da cor do PET e do tempo de reação. Matéria (Rio Janeiro) [Internet]. 2018;23(4). Available from: 10.1590/s1517-707620180004.0566

Lamboune R, Strivens T. Organic film formers. In: Woodhead Publishing, editor. Paint and Surface Coatings - Theory and Practice [Internet]. 2nd ed. 1999. p. 19–90. Available from: 10.1533/9781855737006.19

Chrobok A, Matuszek K, Pankalla E, Grymel A, Latos P. Studies on the Solubility of Terephthalic Acid in Ionic Liquids. Mod Electrochem 1 [Internet]. 2019;601–767. Available from: 10.1007/0-306-46909-x_5

Singh S, Sharma S, Umar A, Mehta SK, Bhatti MS, Kansal SK. Recycling of Waste Poly(ethylene terephthalate) Bottles by Alkaline Hydrolysis and Recovery of Pure Nanospindle-Shaped Terephthalic Acid. J Nanosci Nanotechnol [Internet]. 2018;18(8):5804–9. Available from: 10.1166/jnn.2018.15363

Descargas

Publicado

2023-03-24

Cómo citar

Palmay, P., Sánchez, M., & Alvarado, M. (2023). INFLUENCIA DEL TAMAÑO DE PARTÍCULA EN EL RENDIMIENTO DE LA HIDRÓLISIS ALCALINA DEL POLIETILENTEREFTALATO (PET) POST- CONSUMO. Perfiles, 1(29), 6-15. https://doi.org/10.47187/perf.v1i29.196