Comparison between paired sample sizes with power analysis using R software packages and G * power software

Authors

  • Patricio Badillo Escuela Superior Politécnica de Chimborazo, Facultad de Ciencias, Grupo de Investigación Ciencia de Datos/Carrera de Estadística Informática, Riobamba, Ecuador
  • Rubén Pazmiño Escuela Superior Politécnica de Chimborazo, Facultad de Ciencias, Grupo de Investigación Ciencia de Datos/Carrera de Estadística Informática, Riobamba, Ecuador

DOI:

https://doi.org/10.47187/perf.v1i23.269

Keywords:

statistical power, sample sizes, R packages, G*power

Abstract

Hypothesis verification requires a prior approach of factors such as the sample size and its reliability of statistical tests to address experimental studies, since the presence of an effect derived from a treatment can be rejected, when in reality there is not enough statistical power to arrive at that conclusion. The objective of this article is to define what is the power of a statistical test, explain its calculation and determine the level of approximation of the sample sizes of the statistical test of paired means generated by three R software packages, and identify if there are similarities in the generation of results with the G * power software; giving a degree of security and confidence for statistical tests in power analysis.

Downloads

Download data is not yet available.

References

Cálculo del poder estadístico de un estudio [Internet]. [citado 25 de noviembre de 2019]. Disponible en: https://www.fisterra.com/mbe/investiga/poder_estadistico/poder_estadistico.asp

Para C, Investigación LA, Fisher R. TAMAÑO DE EFECTO : 2007;

Cohen J. Statistical Power Analysis for the Behavioral Sciences. Second Edi. New York, New York, USA: LAWRENCE ERLBAUM ASSOCIATES; 1988. 579 p.

Gesto Giannattasio N. Análisis de Poder Estadístico y su Aplicación a Evaluaciones Experimentales. 2016 ene.

Perugini M, Gallucci M, Costantini G. A Practical Primer To Power Analysis for Simple Experimental Designs. Int Rev Soc Psychol. julio de 2018;31(1):20.

Pruebas pareadas. SHE. mayo de 2003;6.

Unknown P por. Prueba t de Student [Internet]. [citado 25 de noviembre de 2019]. Disponible en: http://pruebatstudentf.blogspot.com/

Kiel C. G * Power 3 : A flexible statistical power analysis program for the social , behavioral , and biomedical sciences. 2007;39(2):175-91.

(PDF) A short tutorial of GPower [Internet]. [citado 25 de noviembre de 2019]. Disponible en: https://www.researchgate.net/publication/49619426_A_short_tutorial_of_GPower

Blomberg S. Power Analysis using R. 2015.

pwr.pdf [Internet]. [citado 26 de noviembre de 2019]. Disponible en: https://cran.r-project.org/web/packages/pwr/pwr.pdf

WebPower.pdf [Internet]. [citado 26 de noviembre de 2019]. Disponible en: https://cran.r-project.org/web/packages/WebPower/WebPower.pdf

powerAnalysis.pdf [Internet]. [citado 26 de noviembre de 2019]. Disponible en: https://cran.r-project.org/web/packages/powerAnalysis/powerAnalysis.pdf

Assumptions Part 1: Normality [Internet]. Discovering Statistics. 2012 [citado 26 de noviembre de 2019]. Disponible en: https://www.discoveringstatistics.com/2012/08/06/assumptions-part-1-normality/

Zhang S, Jalali D, Wuttke J, Mu K, Lam W, Ernst MD, et al. Empirically Revisiting the Test Independence Assumption.

Assumptions Part 2: Homogeneity of Variance/Homoscedasticity [Internet]. Discovering Statistics. 2012 [citado 26 de noviembre de 2019]. Disponible en: https://www.discoveringstatistics.com/2012/09/13/assumptions-part-2-homogeneity-of-variancehomoscedasticity/

Garson GD. Single User License . Do not copy or post . Single User License . Do not copy or post . 2012;1-52.

Moni M, Shuaib M. A Comparison of Power of Normality Tests: Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors, Anderson-Darling and Jarque-Bera Tests. 2015.

Tests S. Chapter 10 Chi Square Tests.

Mu Z. Comparing the Statistical Tests for Homogeneity of Variances. En 2006.

Consejos para reconocer y transformar datos no normales - iSixSigma [Internet]. 2010 [citado 26 de noviembre de 2019]. Disponible en: https://www.isixsigma.com/tools-templates/normality/tips-recognizing-and-transforming-non-normal-data/

Cowan AR, Sergeant AMA. Interacting biases, non-normal return distributions and the performance of tests for long-horizon event studies. J Bank Finance [Internet]. 1 de abril de 2001 [citado 26 de noviembre de 2019];25(4):741-65. Disponible en: http://www.sciencedirect.com/science/article/pii/S0378426600000947

anova_un_factor-lectura.pdf [Internet]. [citado 26 de noviembre de 2019]. Disponible en: https://previa.uclm.es/profesorado/mdsalvador/58109/teoria/anova_un_factor-lectura.pdf

tests noparametricos.pdf [Internet]. [citado 26 de noviembre de 2019]. Disponible en: https://www.ugr.es/~rruizb/cognosfera/sala_de_estudio/estadistica/tests%20noparametricos.PDF

Perugini M, Gallucci M, Costantini G. Salvaguardar el poder como protección contra estimaciones imprecisas del poder. Perspect Psychol Sci [Internet]. 1 de mayo de 2014 [citado 26 de noviembre de 2019];9(3):319-32. Disponible en: https://doi.org/10.1177/1745691614528519

Published

2020-01-31

How to Cite

Badillo, P., & Pazmiño, R. (2020). Comparison between paired sample sizes with power analysis using R software packages and G * power software. Perfiles, 1(23), 48-53. https://doi.org/10.47187/perf.v1i23.269