Estimation of Pinus radiata D. DON tree heights in San Juan, Chimborazo, using unmanned aerial vehicles
DOI:
https://doi.org/10.47187/perf.v1i32.276Keywords:
Plantation, Clinometer, RTK, Drones, HeightAbstract
The present study seeks to identify the factors presented by students with dyscalculia that hinder the learning of algebra, due to the difficulty they have in understanding abstract concepts such as numbers, which triggers poor academic performance and a bad attitude towards mathematics. The purpose of this research is to evaluate the effectiveness of the AG2C methodology (Adaptation, Gamification, Collaboration and Contextualization) in teaching basic algebra to this type of student. For this purpose, a qualitative literature review research of scientific articles published in high-impact journals was carried out, from which 65 relevant articles on dyscalculia, algebra teaching, pedagogical strategies, adaptive approaches and learning monitoring were obtained. This analysis indicated that the AG2C methodology substantially improves the comprehension and resolution of algebraic problems in students with dyscalculia. In addition, AG2C is adaptable in different educational contexts in both rural and urban areas, allowing them to overcome socioeconomic gaps. Important challenges were also identified in its implementation due to teachers' resistance to change and the need for specialized training.
Downloads
References
Cabrera J, Lamelas MT, Montealegre AL. Estimación de variables dasométricas a partir de datos LiDAR PNOA en masas regulares de Pinus halepensis Mill. 2014.
Ferreira Rojas O. Manual de inventarios forestales. Escuela Nacional de Ciencias Forestales; 1990.
Gambetta F, Bermudez. Curso inventarios forestales en bosques secos [Internet]. 1994. Available from: https://repositorio.catie.ac.cr/handle/11554/1056
Suh J, Choi Y. Mapping hazardous mining-induced sinkhole subsidence using unmanned aerial vehicle (drone) photogrammetry. Environ Earth Sci. 2017;76. https://doi.org/10.1007/s12665-017-6458-3
Rouse JW, Haas RH, Deering DW, Schell JA, Harlan JC. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation (E75-10354) [Internet]. 1974. Available from: https://ntrs.nasa.gov/citations/19750020419
Gutiérrez ARH, Duarte MAT, France RG, León RR. El uso de drones en ciencias de la tierra. Reaxión. Revista arbitrada de divulgación científica de la Universidad Tecnológica de León. 2017 Jan 23 [Internet]. Available from: http://reaxion.utleon.edu.mx/Art_El_uso_de_drones_en_ciencias_de_la_tierra.html
Baena S, Boyd DS, Moat J. UAVs in pursuit of plant conservation—Real world experiences. Ecol Inform. 2018;47:2-9. https://doi.org/10.1016/j.ecoinf.2017.11.001
Gago J, Douthe C, Coopman RE, Gallego PP, Ribas-Carbo M, Flexas J, et al. UAVs challenge to assess water stress for sustainable agriculture. Agric Water Manag. 2015;153:9-19. https://doi.org/10.1016/j.agwat.2015.01.020
Colomina I, Molina P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J Photogramm Remote Sens. 2014;92:79-97. https://doi.org/10.1016/j.isprsjprs.2014.02.013
Rejeb A, Abdollahi A, Rejeb K, Treiblmaier H. Drones in agriculture: A review and bibliometric analysis. Comput Electron Agric. 2022;198:107017. https://doi.org/10.1016/j.compag.2022.107017
Cuerno Rejado C, Garcia Hernandez L, Sanchez Carmona A, Carrio Fernandez A, Sanchez Lopez JL, Campoy Cervera P. EVOLUCIÓN HISTÓRICA DE LOS VEHÍCULOS AÉREOS NO TRIPULADOS HASTA LA ACTUALIDAD. DYNA Ing Ind. 2016;91(1):282-8. https://doi.org/10.6036/7781
Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology. 2012;179:300-14. https://doi.org/10.1016/j.geomorph.2012.08.021
Fritz A, Kattenborn T, Koch B. UAV-BASED PHOTOGRAMMETRIC POINT CLOUDS – TREE STEM MAPPING IN OPEN STANDS IN COMPARISON TO TERRESTRIAL LASER SCANNER POINT CLOUDS. Int Arch Photogramm Remote Sens Spatial Inf Sci. 2013;XL-1-W2:141-6. https://doi.org/10.5194/isprsarchives-XL-1-W2-141-2013
Hung C, Bryson M, Sukkarieh S. Multi-class predictive template for tree crown detection. ISPRS J Photogramm Remote Sens. 2012;68:170-83. https://doi.org/10.1016/j.isprsjprs.2012.01.009
Noboa S. Estimación de altura de frailejones (Espeletia pycnophylla) en el volcán Chiles mediante UAV (Carchi – Ecuador) [Master’s thesis]. Universidad Politécnica Salesiana; 2019.
Manfreda S, McCabe M, Miller P, Lucas R, Madrigal V, Mallinis G, et al. On the Use of Unmanned Aerial Systems for Environmental Monitoring [Internet]. 2018. https://doi.org/10.20944/preprints201803.0097.v1
Cunliffe AM, Brazier RE, Anderson K. Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sens Environ. 2016;183:129-43. https://doi.org/10.1016/j.rse.2016.05.019
Moradi S, Bokani A, Hassan J. UAV-based Smart Agriculture: A Review of UAV Sensing and Applications. 2022 32nd International Telecommunication Networks and Applications Conference (ITNAC). 2022:181-4. https://doi.org/10.1109/ITNAC55475.2022.9998411
Reyes-Zurita N, Rodríguez-Ortiz G, Valle JRE-D, Jiménez-Colmenares CL, Rincón-Ramírez JA. Estimación de variables dasométricas en rodales bajo manejo forestal con vehículos aéreos no tripulados. FIGEMPA: Investig Desarro. 2022;13(1), Article 1. https://doi.org/10.29166/revfig.v13i1.3299
White L, Lucieer A, Turner D, Watson C. Evaluación y mitigación de errores para levantamientos LiDAR hipertemporales transportados por UAV del inventario forestal. Actas de Silvilaser, Hobart. 2011.
Queiroz WT. Amostragem em inventário florestal. Belém: Universidade Rural do Amazônia; 2012. 441 p.
Mikita T, Janata P, Surov P. Inventario de rodales forestales basado en fotogrametría combinada aérea y terrestre de corto alcance. Bosques. 2016;7(8):1-14.
Groot A, Cortini F, Wulder MA. Relaciones de atributos de fibra de copa para un inventario forestal mejorado: Progreso y perspectivas. For Chron. 2015;91(3):266-79.
Wallace L, Lucieer A, Turner D, Watson C. Evaluación y mitigación de errores para levantamientos LiDAR hipertemporales transportados por UAV del inventario forestal. Actas de Silvilaser, Hobart. 2011.
Bastian A. Análisis comparativo entre os programas para restituição Fotogramétrica photomodeler y orthowre. III Seminario Internacional sobre Documentación del Patrimonio Arquitectónico con el Uso de Tecnologías Digitales. Joao Pessoa. PB; 2014. p. 119-29.
Iglhaut J, Cabo C, Puliti S, Piermattei L, O'Connor J, Rosette J. Estructura de la fotogrametría de movimiento en la silvicultura: una revisión. Informes For Actuales. 2019;5(3):155-68.
Ablanedo ES, Candler JH, Pérez JRR, Ordoñez C. Precisión de levantamientos de fotogrametría con vehículos aéreos no tripulados (UAV) y SFM en función del número y ubicación de los puntos de control terrestre utilizados. Teledetección. 2018;10(10):2-19.
Figueiredo EO, D'Oliveira MVN, Cerraduras CJ, Papá DA. Estimativa del Volumen de Madeira en Patios de Estocagem de Toras por medio de Cámaras RGB Instaladas en Aeronaves Remotamente Pilotadas (ARP). Bol Cien For.
Rouse JW, Haas RH, Deering DW, Schell JA, Harlan JC. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation (E75-10354) [Internet]. 1974. Available from: https://ntrs.nasa.gov/citations/19750020419
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.