Spatiotemporal Modeling of Climate Regimes in the Central Ecuadorian Highlands Through Dynamic Clustering Using NASA Temperature and Precipitation Data
DOI:
https://doi.org/10.47187/perf.v1i34.364Keywords:
Dynamic clúster, precipitation, temperature, climate, ecosystem, tropical andesAbstract
Climate change has been evident in the Central Sierra of Ecuador, where the complex Andean topography is affected by climatic variations. This study used daily spatial data of maximum temperature (CHIRTS) and precipitation (CHIRPS) to identify and model the region's climate regimes using dynamic clustering. The technique demonstrated high cluster separation efficiency, based on temperature and precipitation classification indices of 0.98% and 0.99%. Four climate types (WT) were identified in terms of temperature and precipitation. WT2 presented moderate thermal conditions, but not the extremes characteristic of regions such as the Coast and the Amazon. WT4 also presented frequent low temperatures and scarce occurrence of extreme thermal events, a climate regime characteristic of the Central Sierra, especially in high mountain areas. Precipitation was observed to be infrequent but constant in Andean areas (WT1), while WT2 and WT3 presented scarce but frequent precipitation in more arid regions such as the Coast and Southern Sierra. The findings contribute to a spatial and temporal understanding of the region's climate, which is essential for environmental planning and climate change management.
Downloads
References
Filonchyk M, Peterson MP, Zhang L, Hurynovich V, He Y. Emisiones de gases de efecto invernadero y cambio climático global: examen de la influencia del CO2, CH4 y N2O. Sci Total Environ. 2024;935:173359.
Vuille M, Bradley RS, Werner M, Keimig F. Cambio climático del siglo XX en los Andes tropicales: observaciones y resultados de modelos. En: Diaz HF, editor. Climate Variability and Change in High Elevation Regions: Past, Present & Future [Internet]. Dordrecht: Springer Netherlands; 2003 [cited 2025 Mar 16]. p. 75–99. Available from: https://doi.org/10.1007/978-94-015-1252-7_5
Bolan S, Padhye LP, Jasemizad T, Govarthanan M, Karmegam N, Wijesekara H, et al. Impacts of climate change on the fate of contaminants through extreme weather events. Sci Total Environ. 2024;909:168388.
VijayaVenkataRaman S, Iniyan S, Goic R. A review of climate change, mitigation and adaptation. Renew Sustain Energy Rev. 2012;16(1):878–97.
Capa-Mora D, Medina J, Benítez Á, Jiménez Álvarez L. Perspectives on climate change and adaptation and mitigation measures amongst farmers of Zamora–Ecuador. Clim Serv. 2025;38:100565.
Toulkeridis T, Tamayo E, Simón-Baile D, Merizalde-Mora MJ, Reyes-Yunga DF, Viera-Torres M, et al. El cambio climático según académicos ecuatorianos: percepciones versus hechos. La Granja. 2020;31(1):21–46.
Cadilhac L, Torres R, Calles J, Vanacker V, Calderón E. Desafíos para la investigación sobre el cambio climático en Ecuador. Neotrop Biodivers. 2017;3(1):168–81.
Francou B, Vuille M, Favier V, Cáceres B. New evidence for an ENSO impact on low-latitude glaciers: Antizana 15, Andes of Ecuador, 0°28′S. J Geophys Res Atmospheres [Internet]. 2004 [cited 2025 Mar 11];109(D18). Available from: https://onlinelibrary.wiley.com/doi/abs/10.1029/2003JD004484
Sanabria J, Neukom R, Llacza A, Salzmann N, Calanca P. Representation of extreme El Niño events and associated atmospheric moisture flux divergence in the central-eastern tropical Pacific in a CMIP6 model ensemble. Weather Clim Extrem. 2025;47:100746.
Alexander MA, Vimont DJ, Chang P, Scott JD. The impact of extratropical atmospheric variability on ENSO: testing the seasonal footprinting mechanism using coupled model experiments. J Clim [Internet]. 2010 [cited 2025 Jul 23]. Available from: https://journals.ametsoc.org/view/journals/clim/23/11/2010jcli3205.1.xml
Millán H, Kalauzi A, Llerena G, Sucoshañay J, Piedra D. Climatic trends in the Amazonian area of Ecuador: classical and multifractal analyses. Atmos Res. 2008;88(3):355–66.
Michelangeli PA, Vautard R, Legras B. Weather regimes: recurrence and quasi stationarity. J Atmos Sci [Internet]. 1995 [cited 2025 Jun 25]. Available from: https://journals.ametsoc.org/view/journals/atsc/52/8/1520-0469_1995_052_1237_wrraqs_2_0_co_2.xml
Laraque A, Ronchail J, Cochonneau G, Pombosa R, Guyot JL. Heterogeneous distribution of rainfall and discharge regimes in the Ecuadorian Amazon Basin. J Hydrometeorol [Internet]. 2007 [cited 2025 Jun 19]. Available from: https://journals.ametsoc.org/view/journals/hydr/8/6/2007jhm784_1.xml
Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. World map of the Köppen-Geiger climate classification updated. Meteorol Z. 2006;15(3):259–63.
Netzel P, Stepinski T. On using a clustering approach for global climate classification. J Clim [Internet]. 2016 [cited 2025 Jul 2]. Available from: https://journals.ametsoc.org/view/journals/clim/29/9/jcli-d-15-0640.1.xml
Diday E, Simon JC. Clustering analysis. En: Fu KS, editor. Digital Pattern Recognition [Internet]. Berlin, Heidelberg: Springer; 1976 [cited 2025 Mar 3]. p. 47–94. Available from: https://doi.org/10.1007/978-3-642-96303-2_3
Yokoi S, Takayabu YN, Nishii K, Nakamura H, Endo H, Ichikawa H, et al. Application of cluster analysis to climate model performance metrics. J Appl Meteorol Climatol [Internet]. 2011 [cited 2025 Jun 26]. Available from: https://journals.ametsoc.org/view/journals/apme/50/8/2011jamc2643.1.xml
Saputra DM, Saputra D, Oswari LD. Effect of distance metrics in determining K-value in K-means clustering using elbow and silhouette method. En: Atlantis Press [Internet]. 2020 [cited 2025 Jun 28]. p. 341–6. Available from: https://www.atlantis-press.com/proceedings/siconian-19/125939938
Muñoz ÁG, Yang X, Vecchi GA, Robertson AW, Cooke WF. A weather-type-based cross-time-scale diagnostic framework for coupled circulation models. J Clim [Internet]. 2017 [cited 2025 Jun 28]. Available from: https://journals.ametsoc.org/view/journals/clim/30/22/jcli-d-17-0115.1.xml
Miranda G. Cluster-Dinamico-Sierra-Ecuador/Cluster_Dinamico_Precipitación.ipynb [Internet]. GitHub; 2025 [cited 2025 Jun 18]. Available from: https://github.com/Geovanny-Miranda1/Cluster-dinamico-Sierra-Ecuador/blob/main/Cluster_Dinamico_Precipitaci%C3%93N.ipynb
Nalluri S, Ramasubbareddy S, Kannayaram G. Weather prediction using clustering strategies in machine learning. J Comput Theor Nanosci. 2019;16(5–6):1977–81.
Cornwall A. Unpacking ‘Participation’: models, meanings and practices. Community Dev J. 2008;43(3):269–83.
Ruiz-Hernández JC, Condom T, Ribstein P, Le Moine N, Espinoza JC, Junquas C, et al. Spatial variability of diurnal to seasonal cycles of precipitation from a high-altitude equatorial Andean valley to the Amazon Basin. J Hydrol Reg Stud. 2021;38:100924.
Rollenbeck R, Bendix J. Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations. Atmos Res. 2011;99(2):277–89.
Pérez N, Mullo H, Marcatoma A. Análisis del cambio climático en un ecosistema alto andino, Riobamba–Ecuador. Perfiles. 2019;1(23):1–8.
Pérez Londo NA, Lema Londo DS, Toapanta Yugcha EA. Patrones de comportamiento de temperatura en el Ecuador en modelos de circulación atmosférica mediante clustering. Rev Científico-Prof. 2023;8(8):2169–85.
Tobar V, Wyseure G. Seasonal rainfall patterns classification, relationship to ENSO and rainfall trends in Ecuador. Int J Climatol. 2018;38(4):1808–19.
Recalde-Coronel GC, Barnston AG, Muñoz ÁG. Predictability of December–April rainfall in coastal and Andean Ecuador. J Appl Meteorol Climatol [Internet]. 2014. Available from: https://journals.ametsoc.org/view/journals/apme/53/6/jamc-d-13-0133.1.xml
Buytaert W, Celleri R, Willems P, Bièvre BD, Wyseure G. Spatial and temporal rainfall variability in mountainous areas: a case study from the south Ecuadorian Andes. J Hydrol. 2006;329(3):413–21.
Thielen DR, Ramoni-Perazzi P, Zamora-Ledezma E, Puche ML, Marquez M, Quintero JI, et al. Effect of extreme El Niño events on the precipitation of Ecuador. Nat Hazards Earth Syst Sci. 2023;23(4):1507–27.
Araujo CR, Hidalgo HG. Aplicación del cálculo fraccional a una serie de temperaturas de la zona andina. Perfiles. 2020;1(24):54–61.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.













