Synthesis and characterization of polymeric hydrogels functionalized with magnetic microparticles
DOI:
https://doi.org/10.47187/perf.v1i35.367Keywords:
Hydrogel, Microparticles, Functionalization, Inverse Microemulsion, PolymerizationAbstract
The objective of this study was to synthesize magnetic microparticles via chemical coprecipitation and incorporate them into polymeric hydrogels produced by inverse microemulsion. In the hydrogel synthesis stage, the agarose concentration (0.04%, 0.05%, and 0.06% w/w), the melting temperature (50, 60, and 70 °C), and the homogenization time (7, 10, and 15 minutes) were evaluated. The particles and hydrogels were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and refractometry. The results showed that the most stable sample was obtained with 0.05% agarose, at 60 °C, and 10 minutes of homogenization (treatment 5). The characterization confirmed the presence of Fe–O–Fe bonds, microparticles with crystalline morphology, and an average size of 15 µm. A stable emulsion with homogeneously distributed microparticles was obtained. Refractometry indicated Brix values of up to 72.70%, suggesting efficient microparticle retention. Statistical analysis showed that all factors and their interactions had a significant influence on hydrogel functionalization. These findings demonstrate that hydrogels functionalized with magnetic microparticles exhibit high loading capacity and potential for biomedical applications.
Downloads
References
Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecu-les. 2020;25. https://doi.org/10.3390/molecules25010112
Foladori G, Invernizzi N. Implicaciones sociales y ambientales del desarrollo de las nanotecnologías en América Latina y el Caribe. Zacatecas (MX): IPEN; 2012 [Inter-net]. https://ipen.org/sites/default/files/documents/ipen_nano_latin_amer-es.pdf
Nemirovsky A, Audebert F, Oliveira ON Jr, Constantino CJL, Barrientos L, Gonzá-lez G, et al. Nanoscience and nanotechnology in Latin America. In: Ekekwe N, editor. Nanotechnology and microelectronics: Global diffusion, economics and policy. IGI Global; 1AD. https://doi.org/10.4018/978-1-61692-006-7.CH021
El-Kady MM, Ansari I, Arora C, Rai N, Soni S, Verma DK, et al. Nanomaterials: A comprehensive review of applications, toxicity, impact, and fate to environment. J Mol Liq. 2023;370:121046. https://doi.org/10.1016/J.MOLLIQ.2022.121046
Jeyaraman M, Jeyaraman N, Ramasubramanian S, Balaji S, Iyengar KP, Jain VK, et al. Nanomaterials in point-of-care diagnostics: Bridging the gap between laboratory and clinical practice. Pathol Res Pract. 2024;263:155685. https://doi.org/10.1016/J.PRP.2024.155685
Mehta RV. Synthesis of magnetic nanoparticles and their dispersions with special reference to applications in biomedicine and biotechnology. Mater Sci Eng C. 2017;79:901–16. https://doi.org/10.1016/J.MSEC.2017.05.135
Yang F, Li J, Chen T, Ren W, Gao C, Lin J, et al. Applications of magnetic nanoparticles for boundaries in biomedicine. Fundam Res. 2025;5(4):1401–22. https://doi.org/10.1016/J.FMRE.2024.12.017
Puca Pacheco M, Guerrero Aquino M, Tacuri Calanchi E, López Campos R. Síntesis y caracterización de nanopartículas superparamagnéticas obtenidas por precipitación en microemulsión inversa para aplicaciones biomédicas. Rev Soc Quím Peru. 2013;79:99–106. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1810-634X2013000200002
Wichterle O, Lím D. Hydrophilic gels for biological use. Nature. 1960;185:117–8. https://doi.org/10.1038/185117a0
Katime Amashta I, Katime Trabanca D, Katime Trabanca O. Los materiales inteligentes de este milenio: los hidrogeles macromoleculares. 1a ed. 2004:335.
Madduma-Bandarage USK, Madihally SV. Synthetic hydrogels: Synthesis, novel trends, and applications. J Appl Polym Sci. 2021;138:50376. https://doi.org/10.1002/APP.50376
Koolivand M, Shokouhi M, Esfandyari M, Koolivand Salooki M, Sadeghi M. A review of fabrication methods for biodegradable pH-responsive nanocomposite microgels and their performance in enhanced oil recovery. S Afr J Chem Eng. 2024;50:340–52. https://doi.org/10.1016/J.SAJCE.2024.09.004
Espenti CS, Mettu MR, TV S, Boora S, Kummara MR, Krishna KR, et al. pH-responsive polymer hydrogel nanocomposites for sensor applications: A review. Sens Actuators A. 2025;393:116853. https://doi.org/10.1016/J.SNA.2025.116853
Ramirez A, Benítez JL, Rojas de Astudillo L, Rojas de Gáscue B. Materiales polí-meros tipo hidrogeles: revisión sobre su caracterización mediante FTIR, DSC, MEB y MET. Rev Latinoam Metal Mater. 2016;36:108–30. https://ve.scielo.org/scielo.php?pid=S0255-69522016000200002&script=sci_abstract
Lohani A, Saxena R, Duarte JG, Khan S, Figueiras A, Mascarenhas-Melo F. Tailored polymeric hydrogels for regenerative medicine and drug delivery: From material design to clinical applications. Int J Pharm. 2025;681:125818. https://doi.org/10.1016/J.IJPHARM.2025.125818
Cortés J, Puig J, Morales J, Mendizábal E. Thermosensitive nanostructured hydrogels synthesized by inverse microemulsion polymerization. Rev Mex Ing Quím. 2011;10:513–20. https://www.scielo.org.mx/scielo.php?pid=S1665-27382011000300016&script=sci_abstract&tlng=en
Long J, Zhou G, Yu X, Xu J, Hu L, Pranovich A, et al. Harnessing chemical functionality of xylan hemicellulose towards carbohydrate polymer-based pH/magnetic dual-responsive nanocomposite hydrogel for drug delivery. Carbohydr Polym. 2024;343:122461. https://doi.org/10.1016/J.CARBPOL.2024.122461
Viteri A, Espanol M, Ginebra MP, García-Torres J. Tailoring drug release from skin-like chitosan-agarose biopolymer hydrogels containing Fe3O4 nanoparticles using magnetic fields. Chem Eng J. 2025;517:164214. https://doi.org/10.1016/J.CEJ.2025.164214
Babeli I, Ruano G, Casanovas J, Ginebra MP, García-Torres J, Alemán C. Conductive, self-healable and reusable poly(3,4-ethylenedioxythiophene)-based hydrogels for highly sensitive pressure arrays. J Mater Chem C. 2020;8:8654–67. https://doi.org/10.1039/D0TC01947J
Salager JL. Surfactantes: tipos y usos. Mérida (VE): Universidad de los Andes; 2002 [Internet]. https://es.firp-ula.org/wp-content/uploads/2019/06/S300A.pdf
Chang C, Zhang L. Cellulose-based hydrogels: Present status and application prospects. Carbohydr Polym. 2011;84:40–53. https://doi.org/10.1016/j.carbpol.2010.12.023
Dragan ES. Design and applications of interpenetrating polymer network hydrogels: A review. Chem Eng J. 2014;243:572–90. https://doi.org/10.1016/j.cej.2014.01.065
Cardona Iglesias J, Castro Rincón E, Suárez Paternina E. Los grados Brix como herramienta para determinar el potencial nutricional en forrajes. Cundinamarca (CO): AGROSAVIA; 2022. https://doi.org/10.21930/agrosavia.manual.7405798
Fathi M, Alami-Milani M, Geranmayeh MH, Barar J, Erfan-Niya H, Omidi Y. Dual thermo- and pH-sensitive injectable hydrogels of chitosan/(poly(N-isopropylacrylamide-co-itaconic acid)) for doxorubicin delivery in breast cancer. Int J Biol Macromol. 2019;128:957–64. https://doi.org/10.1016/j.ijbiomac.2019.01.122
El-Dib F, Mohamed D, El-Shamy O, Mishrif M. Study the adsorption properties of magnetite nanoparticles in the presence of different synthesized surfactants for heavy metal ions removal. Egypt J Pet. 2020;29:1–7. https://doi.org/10.1016/J.EJPE.2019.08.004
Mohammadi H, Nekobahr E, Akhtari J, Saeedi M, Akbari J, Fathi F. Synthesis and characterization of magnetite nanoparticles by co-precipitation method coated with biocompatible compounds and evaluation of in-vitro cytotoxicity. Toxicol Rep. 2021;8:331–6. https://doi.org/10.1016/J.TOXREP.2021.01.012
Jarosz A, Kapusta O, Gugała-Fekner D, Barczak M. Synthesis and characterization of agarose hydrogels for release of diclofenac sodium. Materials. 2023;16:6042. https://doi.org/10.3390/MA16176042
Awadhiya A, Kumar D, Verma V. Crosslinking of agarose bioplastic using citric acid. Carbohydr Polym. 2016;151:60–7. https://doi.org/10.1016/j.carbpol.2016.05.040
Li L, Qin D, Yang X, Liu G. Synthesis of ellipsoidal hematite/polymer/titania hybrid materials and the corresponding hollow ellipsoidal particles. Polym Chem. 2010;1:289–95. https://doi.org/10.1039/b9py00230h
Xuan X, Li Y, Xu X, Pan Z, Li Y, Luo Y, et al. Three-dimensional printable mag-netic hydrogels with adjustable stiffness and adhesion for magnetic actuation and magnetic hyperthermia applications. Gels. 2025;11:67. https://doi.org/10.3390/GELS11010067/S1
Ormaza Hugo RM, Coello Cabezas JR, Basantes Basantes EF. Control del tamaño de microfibras magnéticas poliméricas durante el proceso de síntesis. Ciencia Digital. 2019;3(1):107–17. https://doi.org/10.33262/cienciadigital.v3i1.273
Xu Z, Zhao R, Huang X, Wang X, Tang S. Fabrication and biocompatibility of aga-rose acetate nanofibrous membrane by electrospinning. Carbohydr Polym. 2018;197:237–45. https://doi.org/10.1016/j.carbpol.2018.06.004
Xue L, Sun J. Magnetic hydrogels with ordered structure for biomedical applica-tions. Front Chem. 2022;10:1040492. https://doi.org/10.3389/FCHEM.2022.1040492/XML
Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. J Adv Res. 2015;6:105–21. https://doi.org/10.1016/j.jare.2013.07.006
Varaprasad K, Raghavendra GM, Jayaramudu T, Yallapu MM, Sadiku R. A mini-review on hydrogels classification and recent developments in miscellaneous applications. Mater Sci Eng C. 2017;79:958–71. https://doi.org/10.1016/j.msec.2017.05.096
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.













