APPLICATION OF FRACTIONAL CALCULUS TO A SERIES OF TEMPERATURES OF THE ANDEAN ZONE.
DOI:
https://doi.org/10.47187/perf.v1i24.79Keywords:
Multidimensional Scaling, Fractional State Space Portrait, ChimborazoAbstract
Data analysis is an approach to understand phenomena with complex dynamics. Multidimensional Scaling allows the visualization of systems behavior and also captures its space-time evolution. While fractional calculation, applied through Fractional State Space Portrait permits to identify clusters in data groups, including meteorological variables such as temperature. Aimed at this, the mutually multivariate information has been used to find the optimal derivative order that has re- sulted in an improved revealing of the dynamic temperature system in 11 meteorological stations in the province of Chimborazo during 2015. On the map of the State Space Fractional Portrait two large clusters that represent the two typical seasons of an equatorial tropical climate can be identified. Such clusters are strongly inf luenced by the numerous microclimates present in this heterogeneous territory.
Downloads
References
Tenreiro Machado J, Lopes AM, Galhano AM. Multidimensional scaling visualization using parametric similarity indices. Entropy. 2015; 17(4): p. 1775-1794.
Huang JJ, Tzeng GH, Ong CS. Multidimensional data in multidimensional scaling using the analytic network process. Pattern Recognition Letters. 2006; 26(6): p. 755–767.
Kósi K. Method of data center classifications. Acta Polytechnica Hungarica. 2012; 9(4): p.
–137.
Machado JT, Duarte FB, Duarte DM. Analysis of financial data series using fractional fou- rier transform and multidimensional scaling. Nonlinear Dynamics. 2011; 65(3): p. 235–245.
Machado, Mata ME, Lopes AM. Fractional state space analysis of economic systems. En- tropy. 2015; 17(8): p. 5402–5421.
Machado J, Lopes AM. Fractional state space analysis of temperature time series. Fractional Calculus and Applied Analysis. 2015; 18(6): p. 1518–1536.
Namias V. The fractional order Fourier transform And its aplication to quantum mecha- nics. IMA Journal of Applied Mathematics. 1980; 25(3): p. 241-265.
Lopez A, Tenreiro Machado J. State space analysis of forest fires. Journal of Vibration and Control. 2016; 22(9): p. 2153-2164.
Baigorria GA, Villegas EB, Trebejo I, Carlos JF, Quiroz R. Atmospheric transmissivity: dis- tribution and empirical estimation around the central andes. International Journal of Climatology. 2004; 24(9): p. 1121–1136.
Recalde C, Cisneros C, Vaca D, RAMOS C. Relación de la transmitancia atmosférica con la heliofanía y la diferencia de temperaturas extremas diarias en la zona ecuatorial andina. Informa- ción tecnológica. 2015; 26(1): p. 143–150.
Ramos C, Perez N, Villacreses G, Vaca D, Chavez E, Perez M. Atmospheric transmisivity: a model Comparison for equatorial andean highlands zone. Perfiles. 2016; 2(16): p. 6-13.
Haro S, Escudero A. Interpolación de datos faltantes mediante splint cúbico y mínimos cuadrados. Perfiles. 2017; 1(17): p. 63-66.
Instituto Geofísico de la Escuela Politécnica Nacional.
Instituto Geofísico - EPN. [Online]; 2019 [cited 2019 10 07. Available from: HYPERLINK "https://www.igepn.edu.ec/chimborazo" ht- tps://www.igepn.edu.ec/chimborazo.
Ministerio de Ambiente Ecuador. Subsecretaría de Patrimonio Natural. [Online]; 2013 [ci- ted 2019 10 07. Available from: HYPERLINK "http://app.sni.gob.ec/sni-link/sni/PDOT/NIVEL%20NACIONAL/MAE/ECOSISTEMAS/DOCUMENTOS/Sistema.pdf "
Willems JC, Polderman JW. Introduction to mathematical systems theory: a behavioral approach. Springer Science & Business Media. 2013; 26.
Craven P, Wahba G. Smoothing noisy data with spline functions. Numerische Mathematik. 1978; 31(4): p. 377–403.
Diethelm K. An algorithm for the numerical solution of differential equations of fractional order. Electronic transactions on numerical analysis. 1997; 5(1): p. 1-6.
Holoborodko P. Pavel Holoborodko, Applied Mathematics and more. [Online].; 2008 [ci- ted 2018 Octubre 1. Available from: HYPERLINK "http://www.holoborodko.com/pavel/numeri- cal-methods/numerical-derivative/smooth-low-noise-differentiators/" http://www.holoborodko. Com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators/.
Jaynes E. Information theory and statistical mechanics. Physical review. 1957; 106(4): p.620-630.
Pham TH, Ho TB, Nguyen QD, Tran DH, Nguyen VH. Multivariate Mutual Information Measures for Discovering Biological Networks. In 2012 IEEE RIVF International Conference on Computing & Communication Technologies, Research, Innovation, and Vision for the Future; 2012; Ho Chi Minh City, Vietnam. p. 1-6.
Strehl A, Ghosh J. Cluster ensembles—a knowledge reuse framework for combining multi- ple partitions. Journal of machine learning research. 2002; 3: p. 583–617.
Ylheng W, Yuquan C, Songsong C, Yong W. Discussion on fractional order derivatives. IFAC-PapersOnLine. 2017; 50(1): p. 7002-7006.
Dorcak L. Numerical models for the simulation of the fractional-order control systems. arXiv preprintmath/0204108. 2002.
Srinievasa S. A review on multivariate mutual information. In Univ. of Notre Dame; 2005; Notre Dame, Indiana. p. 1-6.
Vuille, Bradley RS, Keimig F. Climate variability in the andes of ecuador and its relation to tropical pacific and atlantic sea surface temperature anomalies. Journal of Climate. 2000; 13(14): p.2520–2535.
Bendix J, Lauer W. Die niederschlagsjahreszeiten in ecuador und ihre klimadymamische interpretation (rainy seasons in ecuador and their climate-dynamic interpretation). Erdkunde.1992; p. 118–134.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.