Analysis of climate change in a high andean ecosystem, riobamba-ecuador

Authors

  • Natalia Alexandra Pérez Escuela Superior Politécnica de Chimborazo, Science Faculty, Computer Statistics / Chemistry Career, Riobamba (Ecuador)
  • Héctor Salomón Mullo Escuela Superior Politécnica de Chimborazo, Faculty of Sciences, Computer Science / Chemistry Statistics Career, Riobamba (Ecuador)
  • Jessica Alexandra Marcatoma Escuela Superior Politécnica de Chimborazo, Faculty of Sciences, Computer Science / Chemistry Statistics Career, (Ecuador)

DOI:

https://doi.org/10.47187/perf.v1i23.82

Keywords:

Climate Change, Maximum Temperature, Minimum Temperature, Average Temperature, Precipitation

Abstract

The purpose of this research is to demonstrate the existence of climate change in a high Andean ecosystem of Ecuador, through the study of the linear trend of the maximum, minimum, average and precipitation temperature of the meteorological station (M1036) of the Instituto Nacional de Meteorología e Hidrología (INAMHI) located in the Escuela Superior Politécnica de Chimborazo (ESPOCH).  The univariate statistical analysis of the multiyear monthly averages of the years 1976 to 2017 determined a dry climate in the months of June to September and a humid climate in two intervals (February - May and October - December). On the other hand, by means of the Mann Kendall Test, it was evidenced that the average temperature showed a decreasing tendency (-0.004); while the maximum, minimum and precipitation temperature had an increasing tendency (0.0002, 0.003, and 0.039 respectively), where the last two are significant at 5%. It is concluded that climate change is plausible in the central andean area of Ecuador, generating environmental  problems that we must face, and that public policy articulators in the country should consider as inputs for planning.

Downloads

Download data is not yet available.

References

Ministerio del Ambiente (MAE). Sistematización de iniciativas de cambio climático en el Ecuador [Internet]. 02 enero de 2001 [citado 08 de enero 2019]; Disponible en: http://origin.portalces.org/sites/default/files/references/114_MAE.Segunda-Comunicacion-Nacional-sobre-Cambio-Climatico.pdf

Mahmood, R., Babel, M. S. Future changes in extreme temperature events using the statistical Downscaling model (SDSM) in The trans-boundary región of the Jhelum river basin. Weatherand Climate Extremes. 2014; 5: 56-66.

Schoof, J. T., & Scott M, R. Projecting changes in regional temperature and precipitation extremes in the United States. Weather and climate extremes. 2016;11: 28-40.

Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Tank, A. K., Tagipour, A. Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres. 2006: 1-22.

Caicedo Sandoval, C. E. Estudio sobre los efectos locales del cambio climático y fenómenos meteorológicos en la provincia de Cotopaxi. [tesis pregrado]. Cotopaxi: Universidad Técnica de Cotopaxi; 2017.

Vuille, M., Bradley, R. S., Keimig, F. Climate variability in the Andes of Ecuador and its relation

To tropical Pacific and atlantic sea Surface temperatura anomalies. Journal Of Climate. 2000: 2520-2535.

Vázquez, R. Estudio de los efectos del cambio climático sobre la hidrología local. [Internet]. 8 de enero de 2012 [citado 14 enero 2019].Disponible en: http://www.elmercurio.com.ec/316508-estudio-de-losefectos-del-cambio-climatico-sobre-la-hidrologia-local/

Instituto Nacional de Meteorología e Hidrología (INAMHI). Cambio Climático: Cambio y variabilidad climática en el Ecuador condiciones observadas en el primer semestre del año 2001 en el Ecuador [Internet]. 2001 [citado 14 enero 2019]. Disponible en: http://www.serviciometeorologico.gob.ec/

Kisi, O., & Ay, M. Comparison of Mann–Kendall and innovative trend method for wáter quality parameters of the Kizilirmak River, Turkey. Journal of Hydrology. 2014; 513: 362-375.

Nieto, J., Martínez, R., Regalado, j., & Hernández, F.Análisis de tendencia de series de tiempo oceanográficas y meteorológicas para determinar evidencias de cambio climático en la costa del Ecuador. Acta oceanográfica del Pacífico. 2002: 17-21.

Torres, P. Probabilidad y estadística. notas de clase presentadas en la especialización Transmisión y Distribución de Energía Eléctrica, Universidad de Los Andes, 2006.

Cline, W. R. Global warming and agriculture: impact estimates by country. Center for Global development, Washington DC, 2007.

Doering III, O. C., Randolph, J. C., Pfeifer, R. A., & Southworth, J. Effects of climate change and variability on agricultural production systems. Springer Science & Business Media, 2002.

Cornwall, C. La verdad sobre el calentamiento global. Selecciones Reader´s Digest. 2008. pp: 37-43.

Cauvy-Fraunié, S., Condom, T., Rabatel, A., Villacis, M., Jacobsen, D., Dangles, O. Glacial influence in tropical mountain hydrosystems evidenced by the diurnal cycle in water levels. Hydrology and Earth System Sciences. 2013: 4803.

Vuille, M., & Bradley, R. S. Mean annual temperature trends and their vertical structure in the tropical Andes. Geophysical Research Letters, 27(23), 2000. 3885-3888.

Hasan, D., Ratnayake, U., Shams, S. Evaluation of rainfall and temperature trends in Brunei Darussalam. AIP Conference Proceedings. 2016: 8.

Serrano Vincenti, S., Zuleta, D., Moscoso, V., Jácome, P., Palacios, E., Villacís, M. Análisis estadístico de datos meteorológicos mensuales y diarios para la determinación de variabilidad climática y cambio climático en el Distrito Metropolitano de Quito. LA GRANJA. Revista de Ciencias de la vida. 2014: 23-47.

IPCC Grupo Intergubernamental sobre el Cambio Climático. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker T F, Qin D, Plattner G - K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M (eds.)]. Cambridge University Press, Cambridge, 1535 [Internet]. 2013 [citado 14 enero 2019]. Disponible en: http://www.gcrio.org/online.html

Christidis, N., Peter, A. S., Simon, J. B. The role of human activity in the recent warming of} extremely warm daytime temperatures. Journal of Climate. 2011: 1922-1930.

Sayemuzzaman, M., Jha, M. K. Seasonal and annual precipitation time series trend análisis in North Carolina, United States. Atmospheric Research. 2014; 137: 183-194.

Saéz Paguay, M. A. Determinación de la evapotranspiración mediante imágenes aéreas en

bandas del espectro visible e infrarrojo cercano para cultivos de papa solanum spp. [tesis pregrado]. Escuela Superior Politécnica de Chimborazo; 2016.

Peña, Q., et. a. Trend analysis to determine hazards related to climate change in the Andean agricultural areas of Cundinamarca and Boyacá. Agronomía Colombiana. 2011; 29(2): 467-478.

Favier, V., Wagnon, P., Chazarin, J. P., Maisincho, L., Coudrain, A. One‐year measurements of surface heat budget on the ablation zone of Antizana Glacier 15, Ecuadorian Andes. Journal of Geophysical Research: Atmospheres. 2004.

Ministerio de Desarrollo sostenible y Planificación. Programa Nacional de Cambio Climático. Viceministerio de Medio Ambiente Recursos naturales y Desarrollo Forestal. [citado 14enero 2019].Disponible en: http://www.un gsp.org/sites/default/files/documents/bolivia_addendum_spanish.pdf

Published

2020-01-31

How to Cite

Pérez, N. A., Mullo, H. S. ., & Marcatoma, J. A. (2020). Analysis of climate change in a high andean ecosystem, riobamba-ecuador. Perfiles, 1(23), 4-11. https://doi.org/10.47187/perf.v1i23.82