NEW METHODOLOGIES APPLIED TO MULTIVARIATE MONITORING OF STUDENT PERFORMANCE USING CONTROL CHARTS AND THRESHOLD SYSTEMS.

Authors

  • Guido Saltos Segura Universidad de las Américas, School of Physical Sciences and Mathematics, Quito – Ecuador.
  • Miguel Flores Sánchez Escuela Politécnica Nacional, Science Faculty, Quito – Ecuador.
  • Luis Horna Huaraca Escuela Politécnica Nacional, Science Faculty, Quito – Ecuador.
  • Katherine Morales Quinga Escuela Politécnica Nacional, Science Faculty, Quito – Ecuador.

DOI:

https://doi.org/10.47187/perf.v1i24.84

Keywords:

data depth, nonparametric control charts, education

Abstract

This paper uses the concept of data depth as well as the nonparametric control chart developed by Regina Liu, to monitor student performance in a group of subjects at an educational institu- tion over a given period of time. The methodology uses a reference set obtained from the results themselves rather than ideal standards. This reference set serves to calibrate the control chart and therefore monitor subsequent data. The concept of data depth allows creating a univariate index from, in this case, two variables, to generate an order from "inside" to "outside" the point cloud, the most central point being the deepest. The subsequent calculation of the range from the depths is the basis of the chart r.

Downloads

Download data is not yet available.

References

Garbanzo G. (2013) Factores asociados al rendimiento académico en estudiantes universitarios desde el nivel socioeconómico: Un estudio en la Universidad de Costa Rica. Revista Electrónica Educare On-line version ISSN 1409-4258 Educare Vol. 17(3).

Collins J., White G., Kennedy J. (1995). Entry to medical school: an audit of traditional selection requirements. Medical Education. Vol. 29(1): 22-28.

Okwonu F., Ogini, N. (2017) Application of x and S Control Charts to Investigate Students Performance. Journal of Advances in Mathematics and Computer Science. Vol. 23(4): 1-15.

Beshah B. (2012). Students'' Performance Evaluation Using Statistical Quality Control. International Journal of Science and Advanced Technology. Vol. 2(12): 75-79.

Edwards H., Govindaraju K., Lai C. (2007). A control chart procedure for monitoring university student grading. International Journal of Services Technology and Management. Vol. 8(4-5), 344-354.

Eskew R., Faley R. (1988). Some determinants of student performance in the first college-level financial accounting course. The Accounting Review. Vol. 63(1): 137-147

Barahona P., Aliaga V. (2014) Variables predictoras del rendimiento académico de los alumnos de primer año de las carreras de Humanidades de la Universidad de Atacama, Chile. Rev. Int. Investig. Cienc. Soc. Vol. 9(2): 207-220.

Montero E., Villalobos J., Valverde A. (2007). Factores

Institucionales, Pedagógicos, Psicosociales y Sociodemográficos asociados al rendimiento académico en la Universidad de Costa Rica: Un análisis Mul- tinivel. Revista Electrónica de Investigación y Evaluación Educativa. Vol.13 (2): 215-234.

Pandey M., Taruna S. (2014). A Multi-level Classification Model Pertaining to The Student's Academic Performance Prediction. International Journal of Advances in Engineering and Technology. Vol. 7(4):1329-1341.

Ferreyra M. (2007). Determinantes del Desempeño Universitario: Efectos Heterogéneos en un Modelo Censurado. Tesis de Maestría. Maestría en Economía. Universidad Nacional de La Plata.

Muhammedhussen M. (2016). Determinants of

economics students’ academic performance: Case study of Jimma University, Ethiopia. International Journal of Scientific and Research Publications. Vol. 6(1): 566-571.

Cheng A., Liu R., Luxhoj J. (2000) Monitoring multivariate aviation safety data by data depth: control charts and thresholds systems. IIE Transactions 32: 861-872

Cascos I., López A., Romo J. (2011). Data Depth in Multivariate Statistics. Boletín de Estadística e

Investigación Operativa. Vol. 27(3):151-174.

Dyckerhoff, R. (2004). Data depths satisfying the projection property. AStA-Advances in Statistical Analysis. Vol. 88(2): 163–190.

Lange T., Mosler K., Mozharovskyi, P. (2014). Fast nonparametric classification based on data depth. Statistical Papers. Vol. 55(1): 49-69.

Liu R. (1990). On a notion of data depth based on random simplices. The Annals of Statistics. Vol. 18(1): 405-414.

Liu, R. Y. (1988). On a notion of simplicial depth. Proceedings of the National Academy of Sciences. Vol. 85(6): 1732-1734.

Liu R. (1995). Control Charts for Multivariate Processes. American Statistical Association. Vol. 90(432): 1380-138.

Bersimis S., Psarakis S., & Panaretos, J. (2007). Multivariate statistical process control charts: an over- view. Quality and Reliability engineering international. Vol 23(5): 517-543.

Lowry C., Montgomery D. (1995). A review of multivariate control charts. IIE transactions. Vol. 27(6):800-810.

Li Z., Dai Y., Wang Z. (2014). Multivariate change point control chart based on data depth for phase I analysis. Communications in Statistics-Simulation and Computation. Vol. 43(6): 1490-1507.

Liu R., Singh K., Teng J. (2004). DDMA-charts: nonparametric multivariate moving average control charts based on data depth. Allgemeines Statistisches Archiv. Vol 88(2): 235-258.

Liu R., Parelius J., Singh K. (1999). Multivariate analysis by data depth: descriptive statistics, graphics and inference. The Annals of Statistics. Vol. 27(3), 783-858.

Flores M., Naya S., Fernández R. (2014). Quality Control and reliability, (qcr). V01-18. CRAN Repository.

Published

2020-08-17

How to Cite

Saltos Segura, G., Flores Sánchez, M., Horna Huaraca, L., & Morales Quinga, K. (2020). NEW METHODOLOGIES APPLIED TO MULTIVARIATE MONITORING OF STUDENT PERFORMANCE USING CONTROL CHARTS AND THRESHOLD SYSTEMS. Perfiles, 1(24), 68-74. https://doi.org/10.47187/perf.v1i24.84