HIGH ENTALPIA RENEWABLE POTENTIAL ENERGY FROM THE HIGH BASIN OF THE PASTAZA RIVER.

Authors

  • Romel Palaguachi Escuela Superior Politécnica de Chimborazo, Faculty of Sciences, Alternative Energy and Environment Group / Research Group for Environmental Development and Climate Change, Riobamba, Ecuador.
  • Mariela Moreno Escuela Superior Politécnica de Chimborazo, Faculty of Sciences, Alternative Energy and Environment Group / Research Group for Environmental Development and Climate Change, Riobamba, Ecuador.
  • Luis Añilema Escuela Superior Politécnica de Chimborazo, Faculty of Sciences, Alternative Energy and Environment Group / Research Group for Environmental Development and Climate Change, Riobamba, Ecuador.
  • Diego Damián Carrión Escuela Superior Politécnica de Chimborazo, Faculty of Sciences, Alternative Energy and Environment Group / Research Group for Environmental Development and Climate Change, Riobamba, Ecuador.

DOI:

https://doi.org/10.47187/perf.v1i24.88

Keywords:

Solar, Electricity, Solar thermal, High enthalpy

Abstract

It is important that Ecuador carries out a diagnosis of its renewable energy potential; therefore, the following study was executed with data obtained from meteorological stations and with the help of software developed by the National Laboratory for Renewable Energy, Model System Advisor (SAM ), where high enthalpy systems with parabolic collectors were designed in various areas of the upper basin of the Pastaza River, based on its solar energy potential and available area, to ge- nerate electrical energy and to predict possible locations for solar thermal power plants that do not cause a negative impact on the environment. Selected places are close to main roads, water sources, the national interconnected  electric network and there is no human intervention, these favorable conditions are found in Tunshi, Escuela Superior Politecnica de Chimborazo (ESPOCH), Chinga- zo, South of Chimborazo and North of Chimborazo areas. Areas with the highest energy produc- tion on average, were South of Chimborazo and North of Chimborazo and finally the financial analysis show a 20-year investment recovery with the current electric energy price established by Ecuador, at which the investment debt would be paid, therefore the project is feasible and will ge- nerate a positive impact in the country

Downloads

Download data is not yet available.

References

Carra E, Marzo A, Ballestrín J, Polo J, Barbero J, Monterreal R, et al. Atmospheric extinction levels of solar radiation using aerosol optical thickness satellite data. Validation methodology with measurement system. Journal Pre-proof. 2019 Octubre 18;: p. 1-33.

Meinel AB, Meinel MP. In Meinel AB, Meinel MP. Aplicaciones de la Energía Solar. Barcelona: REVERTÉ, S.A; 1982. p. 618.

Expo Energía. Historia de la Energía Hidraúlica. [Online].; 2018. Available from: https:// www.exposolucionesenenergia.com/blog/historia-energia-hidraulica.php?m=.

Rodriguez AA, Figueredo JA, Alejandro CJ. Análisis del potencial energético solar basado en mediciones in situ en el municipio de Acacías-Meta. knowledge E. 2018 Febrero; 2018(6).

Ghimire S, Deo R, Raj N, Mi J. Wavelet-based 3-phase hybrid SVR model trained with satellite- derived predictors, particle swarm optimization and maximum overlap discrete wavelet transform for solar radiation prediction. ELSEVIER. 2019 Junio 25;: p. 1-19.

Carballo JA. Universidad de Almería. [Online]; 2019. Available from: http://repositorio. ual.es/bitstream/handle/10835/6381/actas-jdi2019.pdf?sequence=1&isAllowed=y#page=29.

Zuri Ocampo W. Manual de planificacion y gestion participativa de cuencas y micro cuencas. 2004th ed.; 2004.

Ener Rusen S, Konuralp A. Quality control of diffuse solar radiaton component with satelite-based estimation methods. ELSEVIER. 2019 Julio 16; p. 1772-1779.

Shahsavari A, Morteza A. Potential of solar energy in developing countries for reducing energy-related emissions. Renewable and Sustainable Energy Reviews. 2018 Abril;(90).

Rodriguez Aya A, Figueredo Luna J, Chica García J. Análisis del potencial energético solar basado en mediciones in situ en el municipio de Acacías – Meta. In 6th Engineering, Science and Techno- logy Conference (2017); 2018. p. 690-700.

Evans JM, Schiller S. EL DESAFÍO DEL DISEÑO, LAS ENERGÍAS RENOVABLES Y LA EFICIENCIA EN EL CAMBIO DE LA MATRIZ ENERGÉTICA. Perfiles. 2014; II(12): p. 8-14.

Espejo C, García R. La energía solar termoeléctrica en España. Anales de Geografía. 2010 Octubre 6; 30(2): p. 81-105.

Peña Pupo L, Hidalgo González R, Gutiérrez Urdaneta L, Domínguez Abreu H. Integra- tion Proposal of a Solar Thermal Power Plant to the Cuban National Electric System. Scielo. 2018 Julio; p. 551-561.

Manju S, Sandeep M. Prediction and performance assessment of global solar radiation in Indian cities: A comparison of satellite and surface measured data. ELSEVIER. 2019 Mayo 16;: p. 116-128.

Rodríguez M, Vásquez A, Saltos WJR. RIEMAT JULIO. 2017 Diciembre; 2(2): p. 1-5.

Almanza D. Selección de Turbinas. [Online].; 2017. Available from: https://www.academia. edu/9115384/Selecci%C3%B3n_de_turbinas.

Haro S, Zúñiga L, Meneses A, Escudero A. DETERMINACIÓN DEL COMPORTAMIEN- TO METEREOLÓGICO DEL VIENTO EN LA PROVINCIA DE CHIMBORAZO, ECUADOR. Perfiles.

; 1(23): p. 26-32.

Natalia Alexandra Pérez HSMJAM. ANÁLISIS DEL CAMBIO CLIMÁTICO EN UN ECOSISTEMA ALTO. PERFILES. 2020;: p. 11.

Cristina Ramos1 2 *PGVDVECa. ATMOSPHERIC TRANSMISIVITY: A MODEL COM- PARISON FOR EQUATORIAL ANDEAN. PERFILES. 2016;: p. 13.

Silvia Haro-Rivera* 1ZL2MF1EV. DETERMINACIÓN DEL COMPORTAMIENTO ME- TEOROLÓGICO DEL VIENTO EN LA PROVINCIA DE CHIMBORAZO, ECUADOR. PERFILES. 2020;: p. 32.

NREL. Visor de datos NSRDB. [Online].; 2017. Available from: https://maps.nrel.gov/nsrdb-viewer/?aL=UdPEX9%255Bv%255D%3Dt%26f69KzE%255Bv%255D%3Dt%26f69KzE%255Bd%-255D%3D1&bL=clight&cE=0&lR=0&mC=-1.6834125323078375%2C-78.15673828125&zL=9&f bclid=I- wAR14r6FVmQjvGHHI6HTKe72Ru-7YB3YGD0_ndlB_z8EB4FiDT3WvvPcOrI8.

SIEMENS. Reliable steam turbines. [Online]. Available from: https://new.siemens.com/ global/en/products/energy/power-generation/steam-turbines.html.

Téllez F. Energía Solar Termoeléctrica. Técnico. Madrid: Univ. Pontificia Comillas, Aula de Tecnologías Energéticas; 2008.

Electricidad. CNd. ATLAS SOLAR DEL ECUADOR. Quito:; 2008.

Walter Short, Daniel J. Packey, and. A Manual for the Economic. Golden, Colorado 80401-3393: National Renewable Energy Laboratory, A national laboratory; 1995.

Censos INdEy. Resultados (IPC). ; 2019.

ONU. Objetivos de Desarrollo Sostenible. [Online]; 2018. Available from: https://www. un.org/sustainabledevelopment/es/energy/.

Programa de las Naciones Unidas para el Desarrollo. Energía sostenible. [Online].; 2016. Available from: https://www.undp.org/content/undp/es/home/ourwork/climate-and-disaster-resilience/ sustainable-energy/.

Volumen I, Resoluciones aprobadas por la Conferencia. Anexo II. Río de Janeiro: Naciones Unidas; 1992. Report No.: S.93.I.8.

Published

2020-08-17

How to Cite

Palaguachi, R. ., Moreno, M. ., Añilema, L. ., & Carrión, D. D. . (2020). HIGH ENTALPIA RENEWABLE POTENTIAL ENERGY FROM THE HIGH BASIN OF THE PASTAZA RIVER. Perfiles, 1(24), 75-83. https://doi.org/10.47187/perf.v1i24.88