Photovoltaic potential assessment on rooftops in Quito

Authors

  • Mariela Tapia University of Bremen, Resilient Energy Systems Research Group, Bremen, Germany
  • Leonard Ramos University of Oldenburg, Institute of Physics, Energy Meteorology Group, Oldenburg, Germany
  • Detlev Heinemann
  • Edwin Zondervans University of Twente, Laboratory of Process Systems Engineering, Enschede, The Netherlands

DOI:

https://doi.org/10.47187/perf.v1i30.240

Keywords:

Solar resource assessment, rooftop photovoltaic, techno-economic potential, geographic information systems, Ecuador

Abstract

The objective of this work is to evaluate the technical and economic potential of photovoltaic solar energy on rooftops in urban and rural parishes in Quito, Ecuador. The assessment involves: the estimation of the available rooftop area using geographic information system data, the calculation of PV power generation using a modeling tool in Python, and the evaluation of the economic feasibility in terms of the levelized cost of electricity (LCOE) under three financial scenarios. The results indicate that there is a total available rooftop area of 61 km², on which a total capacity of 5403.74 MWp could be installed to generate a total of 7851.51 GWh per year, which could cover 2.3 times the electricity consumption of the city in 2019. However, the economic assessment shows that rooftop PV technology is only cost-competive under the low financial scenario. Therefore, these findings can support local authorities in planning and designing policies and financial strategies to increase the penetration of rooftop PV and thus exploit the large PV potential evaluated in Quito.

Downloads

Download data is not yet available.

References

IRENA. Renewable capacity highlights 2021 [Internet]. 2022 [cited 2023 Dec 11]. Available from: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Apr/IRENA_-RE_Capacity_Highlights_2022.pdf

Jaeger-Waldau A. PV Status Report 2018 [Internet]. Luxembourg: Publications Office of the European Union; 2018. Available from: https://dx.doi.org/10.2760/826496

IRENA. Rise of Renewables in cities: Energy solutions for the urban future [Internet]. 2020 [cited 2023 Dec 11]. Available from: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Oct/IRENA_Renewables_in_cities_2020.pdf

Ordoñez F, Vaca-Revelo D, Lopez-Villada J. Assessment of the Solar Resource in Andean Regions by Comparison between Satellite Estimation and Ground Measurements: Study Case of Ecuador. J Sustain Dev [Internet]. 2019 Jul 30;12:62. Available from: http://www.ccsenet.org/journal/index.php/jsd/article/view/0/40301

ARCERNNR. Estadística anual y multianual del sector eléctrico ecuatoriano 2020 [Internet]. 2021 [cited 2021 Feb 16]. Available from: https://www.controlrecursosyenergia.gob.ec/wp-content/uploads/downloads/2021/09/Estadistica-2020-baja.pdf

ARCERNNR. Resolución Nro. ARCERNNR-013/2021 [Internet]. 2021 [cited 2021 Feb 13]. Available from: https://www.controlrecursosyenergia.gob.ec/wp-content/uploads/downloads/2021/06/res_nro__arcernnr-013-2021.pdf

Salazar S, Arcos H. Análisis Técnico y Económico de la Implementación del Net Metering para diferentes tipos de Consumidores de Electricidad en el Ecuador. Rev Técnica “energía” [Internet]. 2021 Jul 29;18(1):86–94. Available from: http://revistaenergia.cenace.gob.ec/index.php/cenace/article/view/464

Instituto Nacional de Estadística y Censos (INEC). Censo de Población y Vivienda [Internet]. 2010 [cited 2021 Apr 28]. Available from: http://www.ecuadorencifras.gob.ec/censo-de-poblacion-y-vivienda/

IGM. Geoportal IGM [Internet]. 2021 [cited 2021 Jan 26]. Available from: http://www.geoportaligm.gob.ec

Dávila R, Vallejo D. Evaluación del potencial técnico y económico de la tecnología solar fotovoltaica para la microgeneración eléctrica en el sector residencial del distrito metropolitano de Quito [Internet]. Escuela Politécnica Nacional; 2019. Available from: https://bibdigital.epn.edu.ec/handle/15000/786%0Ahttps://bibdigital.epn.edu.ec/bitstream/15000/786/1/CD-1222.pdf

Sengupta M, Xie Y, Lopez A, Habte A, Maclaurin G, Shelby J. The National Solar Radiation Data Base (NSRDB). Renew Sustain Energy Rev [Internet]. 2018 Jun 1 [cited 2020 Apr 10];89:51–60. Available from: https://www.sciencedirect.com/science/article/pii/S136403211830087X?via%3Dihub#bib4

Tapia M, Heinemann D, Ballari D, Zondervan E. Spatio-temporal characterization of long-term solar resource using spatial functional data analysis: Understanding the variability and complementarity of global horizontal irradiance in Ecuador. Renew Energy [Internet]. 2022;189:1176–93. Available from: https://doi.org/10.1016/j.renene.2022.03.049

Secretaría general de planificación. Geoportal del Municipio del Distrito Metropolitano de Quito [Internet]. 2021 [cited 2021 May 6]. Available from: http://geoportal.quito.gob.ec/smiq/

QGIS Association. QGIS Geographic Information System [Internet]. 2022. Available from: http://www.qgis.org/

Holmgren WF, Hansen CW, Mikofski MA. pvlib python: a python package for modeling solar energy systems. J Open Source Softw [Internet]. 2018;3(29):884. Available from: https://doi.org/10.21105/joss.00884

Jacobson MZ, Jadhav V. World estimates of PV optimal tilt angles and ratios of sunlight incident upon tilted and tracked PV panels relative to horizontal panels. Sol Energy [Internet]. 2018;169(April):55–66. Available from: https://doi.org/10.1016/j.solener.2018.04.030

Zalamea-León E, Mena-Campos J, Barragán-Escandón A, Parra-González D, Méndez-Santos P. Urban photovoltaic potential of inclined roofing for buildings in heritage centers in equatorial areas. J Green Build [Internet]. 2018 Jun [cited 2018 Sep 10];13(3):45–69. Available from: http://www.journalofgreenbuilding.com/doi/10.3992/1943-4618.13.3.45

Dobos A. PVWatts Version 5 Manual - Technical Report NREL/TP-6A20-62641 [Internet]. National Renewable Energy Laboratory. 2014. Available from: https://www.nrel.gov/docs/fy14osti/62641.pdf

Bódis K, Kougias I, Jäger-Waldau A, Taylor N, Szabó S. A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union. Renew Sustain Energy Rev [Internet]. 2019 Oct;114. Available from: https://www.sciencedirect.com/science/article/pii/S1364032119305179

Morocho I, Ríos K. Estudio técnico para incorporar generación distribuida fotovoltaica en el sector residencial del cantón Cuenca [Internet]. Universidad Politécnica Salesiana Sede Cuenca; 2015. Available from: https://dspace.ups.edu.ec/handle/123456789/7516

King DL, Boyson WE, Kratochvil JA. Photovoltaic array performance model. Tech. Rep. SAND2004-3535 [Internet]. 2004. Available from: https://www.osti.gov/biblio/919131

Tjengdrawira C, Richter M, Theologitis IT. Best Practice Guidelines for PV Cost Calculation [Internet]. Accounting for Technical Risks and Assumptions in PV LCOE. Deliverable D3.2. 2016. Available from: http://www.solarbankability.org/fileadmin/sites/www/files/documents/20161213_649997_Best_Practice_Guidelines_for_PV_Cost_Calculation_20161213.pdf

Bermeo I, Matute L, Barragán-Escandón E, Serrano-Guerrero X, Zalamea-León E. Technical and economic feasibility study of a solar plant on a commercial surface in Azogues, Ecuador. Renew Energy Power Qual J [Internet]. 2021 Sep;19(19):177–83. Available from: https://www.icrepq.com/icrepq21/250-21-bermeo.pdf

Barragán-Escandón A, Zalamea-León E, Terrados-Cepeda J. Incidence of Photovoltaics in Cities Based on Indicators of Occupancy and Urban Sustainability. Energies [Internet]. 2019 Feb 28;12(5):810. Available from: https://www.mdpi.com/1996-1073/12/5/810

Benalcazar P, Lara J, Samper M. Distributed Photovoltaic Generation in Ecuador: Economic Analysis and Incentives Mechanisms. IEEE Lat Am Trans [Internet]. 2020 Mar;18(03):564–72. Available from: https://ieeexplore.ieee.org/document/9082728/

Dávi GA, Caamaño-Martín E, Rüther R, Solano J. Energy performance evaluation of a net plus-energy residential building with grid-connected photovoltaic system in Brazil. Energy Build [Internet]. 2016 May;120:19–29. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378778816302146

Trejo R. Estudio de factibilidad técnica económica para la implementación de un sistema de generación fotovoltaica en el edificio de la facultad de ingeniería en ciencias aplicadas [Internet]. Universidad Técnica del Norte; 2021. Available from: http://repositorio.utn.edu.ec/handle/123456789/11213

Salazar G. Análisis técnico y económico de la implementación del net metering para diferentes tipos de consumidores de electricidad en el Ecuador [Internet]. Escuela Politécnica Nacional; 2020. Available from: https://bibdigital.epn.edu.ec/handle/15000/20937

ARCONEL. Pliego tarifario para las empresas eléctricas de distribución codificado [Internet]. 2019 [cited 2021 Oct 27]. Available from: https://www.regulacionelectrica.gob.ec/wp-content/uploads/downloads/2019/07/P-Tarifario-SPEE-2019_Codif.pdf

ARCERNNR. Reportes de información estadística del sector eléctrico [Internet]. 2022 [cited 2021 Feb 8]. Available from: http://reportes.controlrecursosyenergia.gob.ec

Ramirez Camargo L, Zink R, Dorner W, Stoeglehner G. Spatio-temporal modeling of roof-top photovoltaic panels for improved technical potential assessment and electricity peak load offsetting at the municipal scale. Comput Environ Urban Syst [Internet]. 2015;52:58–69. Available from: http://dx.doi.org/10.1016/j.compenvurbsys.2015.03.002

García de Fonseca L, Parikh M, Manghani R. Evolución futura de costos de las energías renovables y almacenamiento en América Latina [Internet]. Juan Paredes, editor. Washington, D.C.: Banco Interamericano de Desarrollo División de Energía; 2019 Dec [cited 2020 Apr 14]. Available from: https://publications.iadb.org/es/evolucion-futura-de-costos-de-las-energias-renovables-y-almacenamiento-en-america-latina

Published

2023-12-29

How to Cite

Tapia, M., Ramos, L., Heinemann, D., & Zondervans, E. (2023). Photovoltaic potential assessment on rooftops in Quito. Perfiles, 1(30), 47-56. https://doi.org/10.47187/perf.v1i30.240