OBTAINING LIQUID DETERGENT USING QUINOA SAPONINE (chenopodium quinoa willd), CHOCHO (lupinus mutabilis sweet) CABUYA (sisalana perrine) AND ITS PRODUCTION DESIGN

Authors

  • Mario-Gustavo Villacrés Alvarez Faculty of Science, Escuela Superior Politécnica de Chimborazo ESPOCH, Riobamba, Ecuador
  • Cristina-Gabriela Calderón Tapia Faculty of Science, Escuela Superior Politécnica de Chimborazo ESPOCH, Riobamba, Ecuador
  • Lourdes-María Cauja Moyón Faculty of Science, Escuela Superior Politécnica de Chimborazo ESPOCH, Riobamba, Ecuador
  • Tatiana-Manuela Arcos Guamán Faculty of Science, Escuela Superior Politécnica de Chimborazo ESPOCH, Riobamba, Ecuador

DOI:

https://doi.org/10.47187/perf.v1i21.46

Keywords:

quinoa (Chenopodium quinoa Willd), chocho (Lupinus mutabilis Sweet), agave (Sisalana perrine), extraction, saponin, liquid detergent

Abstract

Since the appearance of the industry, as well as we obtain products of better use, we also experience changes that damage our water resources. A very clear example of this is the presence of surfactants in detergents, which by their nature form a layer of fat on the surface, preventing the passage of oxygen into the interior, causing the death of aquatic species, and their remains when decomposing emanate strong smells. The industrialization of quinoa is carried out by dry way that is known as scarification, the dust is discarded without any use. In the case of the lupine, when washing, the saponin is completely eliminated in rivers, ditches or sewers. And in the industrialization of the cabuya in the production of ropes, the juice with high content of saponin, is also discarded without any use. For this reason a process was designed to obtain a liquid detergent friendly to the environment, using as raw material the "waste" generated in the industrialization of quinoa, lupine and cabuya, using its content of saponin that is biodegradable. Saponin was obtained by simple extraction using 96% ethanol as a solvent. Where its physical-chemical properties were: 1.11g / mL density; temperature 20.2 ° C; pH 6.64; IR 1,372; ° Brix 25 and viscosity 386.8 cP. The detergent obtained was regulated under  the NTE INEN 0847 (2009) standard, obtaining 3.28% of free alkalinity (NaOH) 0%, of active material 36.12%, phosphates 0.08% and biodegra- dability 94%. , which indicates that it is a product free of alkalis, anti-corrosive sodium silicates, amide foam stabilizers, carboxy methyl cellulose for the formation of suspensions of soil particles, bleaches, fabric softeners, enzymes, optical brighteners and sodium sulphate which are contaminants, therefore contribute to the ecological conservation of the planet, so it can be commercialized, in addition the calculations of the financial indexes were carried out, resulting in a NPV of $ 174,074.21, an IRR of 87% with a profitability index of 2.82, which is a very good option for a microenterprise. It is considered a totally viable project.

Downloads

Download data is not yet available.

References

Jacobsen, S. Mujica, A. & Jensen, C. The Resistance of Quinoa (Chenopodium quinoa Willd.) to Adverse Abiotic Factors, Food Reviews International. 2003; 19(2): 99-109.

Vega, A. Zura, L. Lute, M. Jagus, R. Agüero, V. Pastén, A. Scala, K. & Uribe, E. Assessment of Dietary Fiber, Isoflavones and Phenolic Compounds with Antioxidant and Antimicrobial Properties of Quinoa (Chenopodium quinoa Willd.); Chilean journal of agricultural & animal sciences. 2018; 34 (1): 57-67.

Gil, A. Salas, D. Grey, C. Nordberg, E. Rodriguez, I. Linares, J. Integrated process for sequential extraction of saponins, xylan and cellulose from quinoa stalks (Chenopodium quinoa Willd.). Elsiever Industrial Crops and Products. 2018; 121(1): 54-65.

Heredia, M. Tarelhoa, L. Matosa, A. Robaina. M, Narváez, R. Peralta, M. Thermoeconomic analysis of integrated production of biochar and process heat from quinoa and lupin residual biomass. Elsevier Energy Policy. 2018; 114(1): 332-341.

Dias, B. Sales, D. Weingart, D. Zarur, M. Functional properties of saponins from sisal (Agave sisalana) and juá (Ziziphus joazeiro): Critical micellar concentration, antioxidant and antimicrobial activities. Elsevier Colloids and Surfaces A: Physicochemical and Engineering Aspects.2013; 436(5):736-743.

Bailey, P. & Bailey, C. Química Orgánica, Conceptos y aplicaciones. 5ta ed. México: Prentice Hall Hispanoamérica, S.A; 1998. p. 487-489.

Domínguez, M. La contaminación ambiental, un tema con compromiso social. Scielo P+L. 2015; 10(1): Caldas.

Gender, K. & A, Juan. Estudio de la biodegradación de los detergentes comerciales domésticos de nuestro país. [Trabajo de titulacion de Pre grado]. Universidad de Guayaquil. Facultad de Ingeniería Química. Ingeniería Química; 2005.

Gozáles, M., Barrenetexea, C., Pérez, J., Rodriguez, B. Contaminación ambientales: una visión desde la química. España: Paraninfo; 2003.

ECUADOR. INSTITUTO NACIONAL ECUATORIANO DE NORMALIZACIÓN. Procedimiento para la Toma de Muestras de Granos y Cereales; 1995. 11. Stephen, J. & Weiniger, F. Química Orgánica. Bacelona-España; 1988. p. 706.

Wade L, Jr. Química Orgánica. Madrid: Pearson Education, S.A; 2004. p. 1075-1077.

Guillot, D. & Der, P. Agave sisalana Perr. Ex Engelm., y sus cultivares en España. Vol. 6. España: Bouteloua; 2009. p. 72-75.

Meyhuay, M. Quinua: Operaciones de Pos cosecha. AGSI/FAO [Internet]; 2013 [Citado: 15 septiembre 2017]. Disponible en: http://www.fao.org/docrep/018/ar364s/ar364s.pdf

Wilkinson, J. B. y Moore, R. J. Cosmetología de Harry. Madrid: Edigrafos, S. A; 1990. p. 941.

Geankopolis, C. J. Procesos de transporte y operaciones unitarias. México: Contiental, S.A; 1998. p. 66; p. 161.

Warren L, McCabe, Smith, Julian C y Harrion, Peter. Operaciones Unitarias en Ingeniería Quí- mica. España: McGraw-Hill; 1991. p. 242; p. 890.

Lucid Software Inc. (2018). Lucidchart-flowchart maker. [Internet]; 2018. [Citado: 25 octubre 2017] Disponible en: https://www.lucidchart.com/.

ECUADOR. INSTITUTO NACIONAL ECUATORIANO DE NORMALIZACIÓN (1982). Requisitos que debe Cumplir el Detergente Líquido Destinado al Uso Doméstico Manual de Limpieza y puesta a punto de pisos y zonas comunes en alojamientos. Málaga: Vértice; 2009.

Ocon, J. & Tojo, G. Problemas de Ingeniería Química Operaciones Básicas Tomo I. Madrid: Aguilar; 1963. p. 280.

Dassault Systemes SolidWorks Corporation. SolidWorks-Herramientas. [Internet] 2018. [Citado: 25 octubre 2017] Disponible en: http://www.solidworks.es/sw/3d-cad-design-software.htm

Peralta, E., Mazón, N., Murillo, A., Rodríguez, D., Lomas, L., y Monar, C. Manual Agrícola de Granos Andinos Chocho, Quinua, Amaranto y Ataco. Vol. 1. 3a ed. Ecuador: INIAP; 2012. p. 2-8.

Published

2019-06-30

How to Cite

Villacrés Alvarez, M.-G., Calderón Tapia, C.-G., Cauja Moyón, L.-M., & Arcos Guamán, T.-M. (2019). OBTAINING LIQUID DETERGENT USING QUINOA SAPONINE (chenopodium quinoa willd), CHOCHO (lupinus mutabilis sweet) CABUYA (sisalana perrine) AND ITS PRODUCTION DESIGN. Perfiles, 1(21), 37-43. https://doi.org/10.47187/perf.v1i21.46